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o A connected regular graph is called distance regular if every
bipartite subgraph generated (as parts) by two cocentered
spheres of different radius is biregular.

o In other words, a distance-regular graph is a regular graph G
for which there exist integers b;, ¢;, i =0, ..., d such that for
any two vertices x, y in G and distance i = d(x, y), there are
exactly ¢; neighbors of y in G;_1(x) and b; neighbors of y in
Gi+1(x), where G;(x) is the set of vertices y of G with
d(x,y)=1i
[Brouwer et al. Distance Regular Graphs. p. 434].
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o A set of vertices of a graph or any other discrete metric space
is called an e-perfect code (perfect e-error-correction code),
or simply a perfect code, if the vertex set is partitioned into
the radius-e balls centered in the code vertices.

o The codes of cardinality 1 and the 0-perfect codes are called
trivial perfect codes.
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o The perfect codes in distance regular graphs are objects that
are highly interesting from the point of view of both coding
theory and algebraic combinatorics.

o On one hand, these codes are error correcting codes that
attain the sphere-packing bound (“perfect” means “extremely
good”).

o On the other hand, they possess algebraic properties that are
connected with the algebraic properties of the distance regular
graph; a perfect code is a some kind of divisor [Cvetkovic et
al. Spectra of Graphs: Theory and Application. 1980.
Chapter 4] of the graph.
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It may safely be said that the most important class of distance
regular graphs, for coding theory, is the Hamming graphs.

The Hamming graph H(n, q) is the Cartesian product of n
copies of the complete graph K of order g.

It is usual to consider the n-tuples (= words of length n) over
the Galois field GF(q) as the vertices of H(n, q).

The n-tuples form a vector space over GF(q).

A subspace is called a linear code. A linear code can be
defined by a basis (generator matrix) or by a basis of the dual
subspace (check matrix).
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o For the Hamming graphs H(n, g), the study of possible
parameters of perfect codes is completed only if g is a prime
power [Zinoviev, Leontiev, 1973 and Tietavainen, 1973|.

o l-perfect codes in H(q _11, q) (the Hamming codes and the
codes with parameters of Hamming codes)

check matrix:

= O O
o = O
= = O
N~ O
O O =
= O
N O =
[ R g
e
N~
ON =
=N -
NN =

o 3-perfect binary Golay code in H(23,2);
s 2-perfect ternary Golay code in H(11,3);
o binary repetition code in H(2e+1,2): {000...0,111...1}

o If g is not a prime power (6, 10, 12, 14, 15, ...), the problem

of existence 1-perfect and (for some q) 2-perfect codes is
open.
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Notes on Digital Coding*

The consideration of message coding as a
means for approaching the theoretical capac-
ity of a communication channel, while reduc-
ing the probability of errors, has suggested
the interesting number theoretical problem
of devising lossless binary (or other) coding
schemes serving to insure the reception of a
correct, but reduced, message when an up-
per limit to the number of transmission er-
rors is postulated.

An example of lossless binary coding is
treated by Shannon! who considers the case
of blocks of seven symbols, one or none of
which can be in error. The solution of this
case can beextended to blocks of 2#—1-binary
symbols, and, more generally, when coding
schemes based on the prime number p are
employed, to blocks of p»—1/p—1 symbols
which are transmitted, and received with
complete equivocation of one or no symbol,
each block comprising # redundant symbols
designed to remove the equivocation, When
encoding the message, the #» redundant sym-
bols xm are determined in terms of the mes-
sage symbols ¥ from the congruent rela-
tions

k=(p"—1)/ p=1)—n
E,= X, + amk Y = 0 (mod p).

kel

In the decoding process, the E's are recalcu-
lated with the received symbols, and their
ensemble forms a number on the base p
which determines univocally the mistrans-
mitted symbol and its correction.

In passing from n to n+1, the matrix
with »# rows and p»—1/p—1 columns formed

* Received by the Institute, February 23, 1949,
1C. E. Shannon. “A mathematical theory of com-
munication,” Bell Sys. Tech. Jowr., vol. 27, p. 418;

July, 1948,

with the coefficients of the X’s and ¥’s in the
expression above is repeated p times hori-
zontally, while an (#n+1) st row added, con-
sisting of p"—1/p —1 zeroes, followed by as
many one’s etc. up to p—1; an added column
of n zeroes with a one for the lowest term
completes the new matrix for n+1.

If we except the trivial case of blocks of
2S5+1 binary symbols, of which any group
comprising up to S symbols can be received
in error which equal probability, it does not
appear that a search for lossless coding
schemes, in which the number of errors is
limited but larger than one, can be sys-
tematized so as to yield a family of solutions.
A necessary but not sufficient condition for
the existence of such a lossless coding scheme
in the binary system is the existence of three
or more first numbers of a line of Pascal’s tri-
angle which add up to an exact power of 2. A
limited search has revealed two such cases;
namely, that of the first three numbers of the
90th line, which add up to 212 and that of the
first four numbers of the 23rd line, which add
up to 2%, The first case does not correspond
to a lossless coding scheme, for, were such a
scheme to exist, we could designate by 7 the
number of E,. ensembles corresponding to
one error and having an odd number of 1’s
and by 90—~ the remaining (even) ensem-
bles. The odd ensembles corresponding to

two transmission errors could be formed by
re-entering term by term all the conbina-
tions of one even and one odd ensemble cor-
responding each to one error, and would
number 7(90—7). We should have 7+
r(90 —7) =21, which is impossible for inte-
gral values of 7.

On the other side, the second case can be
coded so as to yvield 12 sure symbols, and the
anix matrix of this case is given in Table I.
A second matrix is also given, which is that
of the only other lossless coding scheme en-
countered (in addition to the general class
mentioned above) in which blocks of eleven
ternary symbols are transmitted with no
more than 2 errors, and out of which six sure
symbols can be obtained.

It must be mentioned that the use of the
ternary coding scheme just mentioned will
always result in a power loss, whereas the
coding scheme for 23 binary symbols and a
maximum of three transmission errors yields
a power saving of 11 db for vanishing prob-
abilities of errors. The saving realized with
the coding scheme for blocks of 27 —1 binary
symbols approaches 3 db for increasing n's
and decreasing probabilities of error, but a
loss is always encountered when n =3.

MaRrceL J. E. GoLay
Signal Corps Engineering Laboratories
Fort Monmouth, N. |

TABLE |

¥ ¥Yi Vs Yo Y5 Yo Vi ¥Ys Yy Yo Yu ¥n Y ¥Y» Yy Y. Ys Yu
X, 1 0 0 1 1 1 0o 0 o0 1 1 1 X1 1 1 1 2 2 0
Xa 1 0 1 1} 1 1 0 1 1 0 1) 1 X2 1 1 2 1 0 2
Xs 1 0 1 1 0 1 1 0 1 0 1 0 X, 1 2 1 )] 1 2
X4 1 0 1 1 1 0 1 1 0 1 0 0 X 1 2 0 1 2 1
Xs 1 1 0 0 1 1 1 0 1 1 0 0 X 1 0 2 2 1 1
X 1 1 0 1 0 1 1 1 0 0 0 1
X1 1 1 0 1 1 0 0 1 1 0 1 0
X 1 1 1 0 0 1 0 1 0 1 1 0
X 1 1 1 0 1 0 1 0 0 0 1 1
X 1 1 1 1 0 0 0 0 1 1 0 1
Xun 0 1 1 1 1 1 1 1 1 1 1 1
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o The Doob graph D(m, n) is a distance regular graph of
diameter 2m + n with the same parameters as the Hamming
graph H(2m + n, 4).

o The Doob graph D(m, n) is the Cartesian product of m copies
of the Shrikhande graph Sh and n copies of the full graph
K = K4 of order 4.
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o As noted in [Koolen, Munemasa, 2000], nontrivial e-perfect
codes in D(m, n) can only exist when e =1 and
2m+ n = (4" —1)/3 for some integer p (with exactly the
same proof as for H(2m + n, 4)).

o Koolen and Munemasa constructed 1-perfect codes in the
Doob graphs of diameter 5 (i.e., D(1,3) and D(2,1)).

o |In the current work:

o Restrictions on the parameters of linear 1-perfect codes in
D(m, n)

o Construction of linear codes in D(m, n) with the structure of
(GR(42))™ x (GF(2%))".

o Construction of linear codes in D(m, n" + n"") with the
structure of (Z2)™ x (Z3)" x 7"



o The Eisenstein integers E are the complex numbers of the
form

-1+ I\/g — 627ri/3

z=a+ bw, w= > , abeZ.
ImT
2w 2wl L
O O O ‘O O O

—2+w —1+w ‘ w —w2
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Eisenstein integers modulo 2 or 4

o Given p € E\{0}, we denote by E, the ring E/pEE of residue
classes of £ modulo p.

We are interested in: Ep ~ GF(22) and E4 ~ GR(42)

Each of 16 elements of [E4 can be uniquely represented in the
form 2a + b where a, b € {0,1,w,w?}.

£ ={-w? w,—1,w? —w,1} is the set of units.

The elements of [E4 are partitioned into 0&, &, 2&, and Y&
where ¢ =2 + w.
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Given p € E\{0}, we denote by E, the ring E/pE of residue
classes of E modulo p.

We are interested in: Ey ~ GF(22) and E4 ~ GR(42)

Each of 16 elements of [E4 can be uniquely represented in the
form 2a+ b where a, b € {0,1,w, w?}.

0 &={-w? w —1,w? —w,1} is the set of units.

The elements of [E4 are partitioned into 0&, £, 2&, and ¢ &
where ¥ = 2 + w.
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o The Shrikhande graph is the Cayley graph of E4 with the
generating set £.
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o Similarly, the vertices of K = K, can be treated as the
elements 0, 1, w, w? of Ey ~ GF(22).

o Then, the vertices of D(m, n) are the elements of EJ’ x EJ,
which is a module over the ring [E4.

o A sumbodule of E}’ x EJ is then a linear code in D(m, n).

o Any weight-1 word (i.e., adjacent to 0) has an element of £ in
the first m coordinates or an element of {1,w,w?} in the last
n coordinates.
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E4 itself is a module over Zg; its elements are represented by
the pairs from Z2, in the basis (w, 1).

Similarly, Eo —» Z3.

Alternatively, the vertices of K4 can be represented by
elements of Zj4.

Then, the vertices of D(m, n’ 4+ n") are the elements of the
module (Z2)™ x (Z3)" x Zj" over the ring Z,.

A sumbodule C of M = (Z3)™ x (Z3)" x ZZ" is then an
additive code of type (n’,n”, m;T,A) in D(m,n’ 4+ n").
Where M/C ~ 7} x 72

Any weight-1 words has values from {01, 10,11,03,30, 33} in
a pair from the first 2m coordinates or values from
{01,10,11} in a pair from the next 2n" coordinates or an
element of {1,2,3} in the last n” coordinates.



Theorem

Assume there is an additive 1-perfect code C of type
(n',n",m;T,A) in D(m,n" +n"). Then n” # 1, T is even,

2m+n + 0" = (222 —1)/3, (1)
3n'+n = 2Tt _7, (2)
n < 28 -1 (3)

o The number of elements in the factor-group is the number of
weight< 1 words. (1) follows. Then I is even.
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Assume there is an additive 1-perfect code C of type
(', ", m;T,A) in D(m,n" + n"). Then n” #£1, T is even,

2m+n + 0" = (222 —1)/3, (1)
3n'+n = 2Tt8 1, (2)
n" < 2821 (3)

o The number of elements in the factor-group is the number of
weight< 1 words. (1) follows. Then I is even.

o The number of order-2 elements in the factor-group is the
number of weight-1 words of order-2. (2) follows.

o There are at least n” weight-1 words of order 2 that are
multiples of 2. (3) follows.

o n” # 1 follows from the fact that a projective space cannot be
partitioned into one point and several lines.



A check matrix of a linear code in D(m, n) consists of two parts:
A=A 5= A A

with elements from E4 and [y, respectively. We define the
multiplication Az" for z = (x|y) as

A*XT + 2A/yT

(here, the result of the multiplication by 2 is considered as a
column-vector over Ey).






Characterization of linear codes

Theorem (Theorem 2)

Linear 1-perfect codes in D(m, n) exist if and only if for some
integer v > 0 and § > 0,

n= (47-4-5 -1)/3 and m= (4”""2‘s = 47"'5)/6.



o From linear 1-perfect codes we trivially get 1-perfect additive
codes of type (n,0, m; 2v,20).

o Then, we can obtain 1-perfect additive codes of type
(n—n"/3,n",m—n"/3;2v,2§) with nonzero n”. The idea is
the following:

o Assume the same column h occurs in both E4 and E, parts of
the check matrix. Then, it “cover” the syndromes
h,wh,w?h,3h,3wh, 3w?h and 2h, 2wh, 2w>h. Regrouping
gives h,2h,3h, and wh, 2wh, 3wh, and w?h, 2w?h, 3w?h, which
can be “covered’ by three Z4 coordinates in the n”-part.

O~ WWw

..10..]..10.. .01

A O U B . ..01..]/..01.. . .10
2 . w? . ..03..]..01.. ..30
130011 .. .31



Theorem (Theorem 3)

Additive 1-perfect codes exist for all parameters that satisfy the
conclusion of Theorem 1 with even A.

PROBLEM! Construct additive 1-perfect codes with odd ¢



Check matrix for an additive 1-perfect code of type (0,7,7;0,3):

12 22 03 32 03 13 11|1 0 0 1 2 3 1

03 30 23 11 33 30 02|01 0 3 3 3 2

22 03 32 03 13 11 120 01 2 3 11
The columns of the matrix are considered as vectors over Z; that
represent elements of the Galois ring GR(4%). Let £ be a primitive
seventh root of 1 in GR(43). The first 14 columns of the matrix
are divided into the pairs £/ 4+ 262 ¢+l 4 2¢i*5 1 =0,1,...,6;
the last 7 columns are £°, &1, ..., &5,



Theorem (Theorem 4)

Assume that positive integers m, n, . satisfy

2m+n = (44 -1)/3,
(4 —25-2+1)/9 if u is odd,

m L (4)
(40 —2-2*+1)/9 if u is even.

Then there is a 1-perfect code in the Doob graph D(m, n).



o For every value (m, n) satisfying 2m+ n = (4" —1)/3 and not
covered by the constructions, construct a 1-perfect code in
D(m, n) or prove its nonexistence. In particular, do there exist
1-perfect codes in D(6,9), D(9,3), D(10,1)?

o For every value (n’, n”, m) satisfying (1)—(3) with odd A >3
(except the case (0,7,7)), construct an additive 1-perfect
code of type (n’,n",m; T, A) in the D(m,n" + n”) or prove its
nonexistence. In particular, does there exist an additive
1-perfect code of type (1,4,8;0,3) in D(8,5)?

o Are the constructed non-additive codes (Theorem 4)
propelinear?



