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Distance-regular graphs

A connected regular graph is called distance regular if every
bipartite subgraph generated (as parts) by two cocentered
spheres of different radius is biregular.

In other words, a distance-regular graph is a regular graph G

for which there exist integers bi , ci , i = 0, ..., d such that for
any two vertices x , y in G and distance i = d(x , y), there are
exactly ci neighbors of y in Gi−1(x) and bi neighbors of y in
Gi+1(x), where Gi (x) is the set of vertices y of G with
d(x , y) = i

[Brouwer et al. Distance Regular Graphs. p. 434].
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Perfect codes

A set of vertices of a graph or any other discrete metric space
is called an e-perfect code (perfect e-error-correction code),
or simply a perfect code, if the vertex set is partitioned into
the radius-e balls centered in the code vertices.

The codes of cardinality 1 and the 0-perfect codes are called
trivial perfect codes.
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Perfect codes in Distance-gerular graphs

The perfect codes in distance regular graphs are objects that
are highly interesting from the point of view of both coding
theory and algebraic combinatorics.

On one hand, these codes are error correcting codes that
attain the sphere-packing bound (“perfect” means “extremely
good”).

On the other hand, they possess algebraic properties that are
connected with the algebraic properties of the distance regular
graph; a perfect code is a some kind of divisor [Cvetkovic et
al. Spectra of Graphs: Theory and Application. 1980.
Chapter 4] of the graph.
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It may safely be said that the most important class of distance
regular graphs, for coding theory, is the Hamming graphs.

The Hamming graph H(n, q) is the Cartesian product of n
copies of the complete graph Kq of order q.

It is usual to consider the n-tuples (= words of length n) over
the Galois field GF(q) as the vertices of H(n, q).

The n-tuples form a vector space over GF(q).

A subspace is called a linear code. A linear code can be
defined by a basis (generator matrix) or by a basis of the dual
subspace (check matrix).
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Perfect codes in Hamming graphs

For the Hamming graphs H(n, q), the study of possible
parameters of perfect codes is completed only if q is a prime
power [Zinoviev, Leontiev, 1973 and Tietavainen, 1973].

1-perfect codes in H( q
m
−1

q−1
, q) (the Hamming codes and the

codes with parameters of Hamming codes)

check matrix:





0 0 0 0 1 1 1 1 1 1 1 1 1
0 1 1 1 0 0 0 1 1 1 2 2 2
1 0 1 2 0 1 2 0 1 2 0 1 2



 ;

3-perfect binary Golay code in H(23, 2);
2-perfect ternary Golay code in H(11, 3);
binary repetition code in H(2e+1, 2): {000...0, 111...1}

If q is not a prime power (6, 10, 12, 14, 15, . . . ), the problem
of existence 1-perfect and (for some q) 2-perfect codes is
open.
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The Doob graphs

The Doob graph D(m, n) is a distance regular graph of
diameter 2m + n with the same parameters as the Hamming
graph H(2m + n, 4).

The Doob graph D(m, n) is the Cartesian product of m copies
of the Shrikhande graph Sh and n copies of the full graph
K = K4 of order 4.
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Perfect codes in Doob graphs

As noted in [Koolen, Munemasa, 2000], nontrivial e-perfect
codes in D(m, n) can only exist when e = 1 and
2m + n = (4µ − 1)/3 for some integer µ (with exactly the
same proof as for H(2m + n, 4)).

Koolen and Munemasa constructed 1-perfect codes in the
Doob graphs of diameter 5 (i.e., D(1, 3) and D(2, 1)).

In the current work:

Restrictions on the parameters of linear 1-perfect codes in
D(m, n)

Construction of linear codes in D(m, n) with the structure of
(GR(42))m × (GF(22))n.

Construction of linear codes in D(m, n′ + n′′) with the
structure of (Z2

4)
m × (Z2

2)
n′ × Z

n′′

4 .
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Eisenstein integers

The Eisenstein integers E are the complex numbers of the
form

z = a+ bω, ω =
−1 + i

√
3

2
= e2πi/3, a, b ∈ Z.

Re

Im

−2−2 00 22 44−1−1 11 33

2ω+12ω+12ω2ω

2ω2+12ω2+1

−2+ω−2+ω −1+ω−1+ω ωω −ω2−ω2

ω2ω2 −ω−ω



Eisenstein integers modulo 2 or 4

Given p ∈ E\{0}, we denote by Ep the ring E/pE of residue
classes of E modulo p.

We are interested in: E2 ≃ GF(22) and E4 ≃ GR(42)

Each of 16 elements of E4 can be uniquely represented in the
form 2a+ b where a, b ∈ {0, 1, ω, ω2}.
E = {−ω2, ω,−1, ω2,−ω, 1} is the set of units.

The elements of E4 are partitioned into 0E , E , 2E , and ψE
where ψ = 2 + ω.
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The Shrikhande graph

Re

Im

22 00 22 0033 11 33

2ω2+12ω2+1 2ω+12ω+1 2ω2+12ω2+1 2ω+12ω+12ω2ω 2ω22ω2 2ω2ω

2ω+12ω+1 2ω2+12ω2+1 2ω+12ω+1 2ω2+12ω2+12ω22ω2 2ω2ω 2ω22ω2

2+ω2+ω 2ω+ω22ω+ω2 ωω 3ω23ω2 2+ω2+ω 2ω+ω22ω+ω2 ωω

2+ω22+ω2 2ω2+ω2ω2+ω ω2ω2 3ω3ω 2+ω22+ω2 2ω2+ω2ω2+ω ω2ω2

The Shrikhande graph is the Cayley graph of E4 with the
generating set E .



The full graph. Doob graphs as modules. Linear codes.

Similarly, the vertices of K = K4 can be treated as the
elements 0, 1, ω, ω2 of E2 ≃ GF(22).

Then, the vertices of D(m, n) are the elements of Em
4 × E

n
2,

which is a module over the ring E4.

A sumbodule of Em
4 × E

n
2 is then a linear code in D(m, n).

Any weight-1 word (i.e., adjacent to 0) has an element of E in
the first m coordinates or an element of {1, ω, ω2} in the last
n coordinates.
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Doob graphs as modules over Z4. Additive codes.

E4 itself is a module over Z4; its elements are represented by
the pairs from Z

2
4, in the basis (ω, 1).

Similarly, E2 −→ Z
2
2.

Alternatively, the vertices of K4 can be represented by
elements of Z4.

Then, the vertices of D(m, n′ + n′′) are the elements of the
module (Z2

4)
m × (Z2

2)
n′ × Z

n′′

4 over the ring Z4.

A sumbodule C of M = (Z2
4)

m × (Z2
2)

n′ × Z
n′′

4 is then an
additive code of type (n′, n′′,m; Γ,∆) in D(m, n′ + n′′).
Where M/C ≃ Z

Γ
2 × Z

∆
4 .

Any weight-1 words has values from {01, 10, 11, 03, 30, 33} in
a pair from the first 2m coordinates or values from
{01, 10, 11} in a pair from the next 2n′ coordinates or an
element of {1, 2, 3} in the last n′′ coordinates.
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Parameters of additive 1-perfect codes.

Theorem

Assume there is an additive 1-perfect code C of type

(n′, n′′,m; Γ,∆) in D(m, n′ + n′′). Then n′′ 6= 1, Γ is even,

2m + n′ + n′′ = (2Γ+2∆ − 1)/3, (1)

3n′ + n′′ = 2Γ+∆ − 1, (2)

n′′ ≤ 2∆ − 1 (3)

The number of elements in the factor-group is the number of
weight≤ 1 words. (1) follows. Then Γ is even.

The number of order-2 elements in the factor-group is the
number of weight-1 words of order-2. (2) follows.

There are at least n′′ weight-1 words of order 2 that are
multiples of 2. (3) follows.

n′′ 6= 1 follows from the fact that a projective space cannot be
partitioned into one point and several lines.
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Construction of linear codes using check matrices

A check matrix of a linear code in D(m, n) consists of two parts:

A = Aγ,δ = A∗|A′

with elements from E4 and E2, respectively. We define the
multiplication AzT for z = (x |y) as

A∗xT + 2A′yT

(here, the result of the multiplication by 2 is considered as a
column-vector over E4).



Check matrices of linear 1-perfect codes

A0,2 =

(

0 0 2 2 2ω 2ω 2ω2 2ω2 1 1 1 1 1 1
1 ψ 1 ψ 1 ψ 1 ψ 0 2 2ω 2ω2 1 −ω
1 1 ψ . . . ψ 0 1 1 1 1

2ω2+1 2+ω2 0 . . . 2+ω2 1 0 1 ω ω2

)

A1,1 =

(

1 1 1 1 ψ ψ ψ ψ 0 1 1 1 1

0 2 2ω 2ω2 0 2 2ω 2ω2 1 0 1 ω ω2

)

A0,1 =
(

1 ψ 1
)



Characterization of linear codes

Theorem (Theorem 2)

Linear 1-perfect codes in D(m, n) exist if and only if for some

integer γ ≥ 0 and δ > 0,

n = (4γ+δ − 1)/3 and m = (4γ+2δ − 4γ+δ)/6.



From linear codes to additive codes

From linear 1-perfect codes we trivially get 1-perfect additive
codes of type (n, 0,m; 2γ, 2δ).

Then, we can obtain 1-perfect additive codes of type
(n − n′′/3, n′′,m − n′′/3; 2γ, 2δ) with nonzero n′′. The idea is
the following:

Assume the same column h occurs in both E4 and E2 parts of
the check matrix. Then, it “cover” the syndromes
h, ωh, ω2h, 3h, 3ωh, 3ω2h and 2h, 2ωh, 2ω2h. Regrouping
gives h, 2h, 3h, and ωh, 2ωh, 3ωh, and ω2h, 2ω2h, 3ω2h, which
can be “covered” by three Z4 coordinates in the n′′-part.

(

. . 1 . . . . 1 . .

. . ω2 . . . . ω2 . .

)

−→









. . 1 0 . . . . 1 0 . .

. . 0 1 . . . . 0 1 . .

. . 0 3 . . . . 0 1 . .

. . 1 3 . . . . 1 1 . .









−→









. . . . . . 0 1 3 . .

. . . . . . 1 0 3 . .

. . . . . . 3 0 1 . .

. . . . . . 3 1 0 . .











Additive codes

Theorem (Theorem 3)

Additive 1-perfect codes exist for all parameters that satisfy the

conclusion of Theorem 1 with even ∆.

PROBLEM! Construct additive 1-perfect codes with odd δ



Additive codes, δ = 3

Check matrix for an additive 1-perfect code of type (0, 7, 7; 0, 3):





1 2 2 2 0 3 3 2 0 3 1 3 1 1 1 0 0 1 2 3 1
0 3 3 0 2 3 1 1 3 3 3 0 0 2 0 1 0 3 3 3 2
2 2 0 3 3 2 0 3 1 3 1 1 1 2 0 0 1 2 3 1 1





The columns of the matrix are considered as vectors over Z4 that
represent elements of the Galois ring GR(43). Let ξ be a primitive
seventh root of 1 in GR(43). The first 14 columns of the matrix
are divided into the pairs ξi + 2ξi+2, ξi+1 + 2ξi+5, i = 0, 1, . . . , 6;
the last 7 columns are ξ0, ξ1, . . . , ξ6.



Non-linear codes

Theorem (Theorem 4)

Assume that positive integers m, n, µ satisfy

2m + n = (4µ − 1)/3,

m ≤
{

(4µ − 2.5 · 2µ + 1)/9 if µ is odd,

(4µ − 2 · 2µ + 1)/9 if µ is even.
(4)

Then there is a 1-perfect code in the Doob graph D(m, n).



Problems

For every value (m, n) satisfying 2m+ n = (4µ − 1)/3 and not
covered by the constructions, construct a 1-perfect code in
D(m, n) or prove its nonexistence. In particular, do there exist
1-perfect codes in D(6, 9), D(9, 3), D(10, 1)?

For every value (n′, n′′,m) satisfying (1)–(3) with odd ∆ ≥ 3
(except the case (0, 7, 7)), construct an additive 1-perfect
code of type (n′, n′′,m; Γ,∆) in the D(m, n′ + n′′) or prove its
nonexistence. In particular, does there exist an additive
1-perfect code of type (1, 4, 8; 0, 3) in D(8, 5)?

Are the constructed non-additive codes (Theorem 4)
propelinear?


