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Regular covering projection of connected graphs

A surjective mapping p : X̃ → X of connected graphs s.t.
fibers p−1(v) and p−1(a) = orbits of a semi-regular subgroup CTp

Construction/reconstruction
by a regular voltage function ζ : A(X )→ Γ ∼= CTp
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Covers in Graph Theory : Motivation

Topological context

realization of graphs on surfaces: the genus problem

Algebraic context

studying symmetry of graphs and maps on surfaces
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Algebraic context: studying symmetry, I

Tutte, 1947: Graphs of valency 3 are at most 5-arc transitive.

Tutte’s 8-cage

First infinite family of 5-arc transitive graphs
were constructed as covers of Tutte’s 8-cage

Algebraic Graph Theory. Biggs, 1974 (Conway)
Djoković, 1974
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Algebraic context: studying symmetry, II

Building catalogs of graphs with prescribed degree of symmetry
Foster census (Bouwer, 1988):

arc transitive graphs of valency 3 on up to 512 vertices
≥ 2002: Extended Foster census. Catalogs of other spacial families.

Conder, Dobcsányi, Malnič, Marušič, Potočnik, Verret, Wilson

Marušič, 1981: Every vertex transitive graph is a regular ZZp-cover
≥ 1995: true for valency 3 and 4, for locally quasi-primitive graphs

Cameron, Dobson, Giudici, Jones, Klin, Malnič,
Marušič, Nowitz, Scapellato

Construction and classification of special families
≥ 1984: Conder, Dobson, Du, Feng, Ivanov, Gardiner, Giudici, Kovács,

Kutnar, Kuzman, Kwak, Li, Lorimer, Marušič, Malnič, Miklavič, Pisanski,
Potočnik, Praeger, Oh, Šparl, Spiga, Verret, Wang, Wilson, Xu, Zhang

Classification of regular maps
≥ 1985: Du, d’Azvedo, Jones, Karabáš, Kovács, Kutnar, Kwak, Kwon,

Malnič, Marušič, Nedela, Singerman, Širan, Škoviera, Wilson, and others

Studying configurations
≥ 1999: Boben, Marušič, Orbanić, Pisanski, Žitnik, and others
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Kutnar, Kuzman, Kwak, Li, Lorimer, Marušič, Malnič, Miklavič, Pisanski,
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Marušič, Nowitz, Scapellato

Construction and classification of special families
≥ 1984: Conder, Dobson, Du, Feng, Ivanov, Gardiner, Giudici, Kovács,
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≥ 1999: Boben, Marušič, Orbanić, Pisanski, Žitnik, and others

5 / 16



Algebraic context: studying symmetry, II

Building catalogs of graphs with prescribed degree of symmetry
Foster census (Bouwer, 1988):

arc transitive graphs of valency 3 on up to 512 vertices
≥ 2002: Extended Foster census. Catalogs of other spacial families.
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Kutnar, Kuzman, Kwak, Li, Lorimer, Marušič, Malnič, Miklavič, Pisanski,
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Algebraic context: studying symmetry, III

Normal reduction method, Lorimer-Praeger, 1984

X → X/N, N /AutX , intransitive

Classification of base graphs

knowledge of stabilizers
Djoković-Miller, 1980. Conder-Nedela, 2009, Goldschmidt, 1980.

using Classification of Finite Simple Groups

Reconstruction of the family

yes – if reduction involves covers.
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Lifting automorphisms along regular covering projections

X̃
g̃−−−−→ X̃

p

y yp

X
g−−−−→ X .

If G ≤ AutX lifts, then we call the projection G -admissible.
the lift of G is a again a group, denoted G̃ ≤ AutX̃

Djoković, 1974: G s-arc transitive ⇒ G̃ s-arc transitive
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Lifting automorphisms – main questions

Lifting conditions in terms of voltages. Well understood
For a given p : X̃ → X , does G ≤ AutX have a lift?

For a given X and G , construct all G -admissible regular covers

Group extensions. Almost no references
Analyze the extension id→ CTp → G̃ → G → id
For a given X and G , construct all regular covers

such that G lifts in a prescribed way, say G̃ ∼= CTp o G

Algorithmic aspects. No references
Efficient algorithms and implementation

split extensions, M. - Požar, 2014

Rok Požar: Magma packge, available on the Web
algorithm for testing G -admissibility, for finding the presentation of G̃ ,
for testing whether the extension is split whenever CTp is solvable, for
testing sectional splittings in the abelian case, for the generation of all

solvable G -admissible covers up to a given size, for the generation of all
G -admissible covers up to a given size
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Split extensions with sectional complements over Ω

Suppose that G lifts as G̃ ∼= CTp o G

Different complements to CTp can have very different actions on X̃ !
transitive / intransitive

Some complement Ḡ to CTp has an invariant section Ω̃
over a G -invariant subset Ω ⊂ V (X ) (usually, Ω = G (b))

Examples

Ω = {b}, p : X̃ → X
The stabilizer Gb ≤ AutX always lifts as CTp o G̃b̃, where b̃ ∈ fibb

Ω = V (X ), p : Q3 → K4

A4 lifts as ZZ2 × A4. All complements are sectional
S4 lifts as ZZ2 × S4. There are intransitive and transitive complements

Ω = V (X ), p : Dodecahedron→ Petersen
A5 lifts to ZZ2 × A5. The unique copy of A5 is transitive
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Sectional split lifts: characterization via stabilizers

Thm. A complement Ḡ is sectional over Ω = G (b) if and only if the

intersection Ḡ ∩ G̃b is the stabilizer of some ũ ∈ fibb.

Derivations
Der(G,CTp) = {δ : G→ CTp | δgh = δgθg(δh)}

Inner derivations
Inn(G,CTp) = {δc : G→ CTp | δcg = c−1θg(c)}

All complements ↔ Der(G,CTp). If CTp is abelian, then Der(G,CTp)
is a group with Inn(G,CTp) a normal subgroup, and

complements/conj ↔ H1(G,CTp) = Der(G,CTp)/Inn(G,CTp).

Thm. Let G lift as a sectional split extension over Ω = G(b). Then
sectional complements ↔ {δ ∈ Der(G,CTp) | δ|Gb

∈ Inn(Gb,CTp)}.
If CTp is abelian, then

sectional complements/conj ↔ ≤ H1(G,CTp)
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Derivations
Der(G,CTp) = {δ : G→ CTp | δgh = δgθg(δh)}

Inner derivations
Inn(G,CTp) = {δc : G→ CTp | δcg = c−1θg(c)}

All complements ↔ Der(G,CTp). If CTp is abelian, then Der(G,CTp)
is a group with Inn(G,CTp) a normal subgroup, and

complements/conj ↔ H1(G,CTp) = Der(G,CTp)/Inn(G,CTp).

Thm. Let G lift as a sectional split extension over Ω = G(b). Then
sectional complements ↔ {δ ∈ Der(G,CTp) | δ|Gb

∈ Inn(Gb,CTp)}.
If CTp is abelian, then

sectional complements/conj ↔ ≤ H1(G,CTp)

10 / 16



Sectional split lifts: characterization via stabilizers
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Counting invariant sections

Thm. All sectional complements over Ω = G(b) have the same number
of invariant sections, namely

|Fix(G̃ũ)| = |CCTp(G̃ũ)|, where ũ ∈ fibb is arbitrary.

Pro. Let Ḡ be a sectional complement with an invariant section Ω over
Ω. Then the conjugate subgroup c Ḡ c−1, c ∈ CTp, is also a sectional
complement, with c(Ω) as an invariant section over Ω.

Thm. Let C be a conjugacy class of a sectional complements over G(u).
Then the number of invariant sections through ũ ∈ fibb that belong to
some sectional complement from C does not depend on ũ ∈ fibb, and is
equal to

|Fix(G̃ũ)| / |CCTp
(Ḡ)| = |CCTp

(G̃ũ)| / |CCTp
(Ḡ)|.
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|Fix(G̃ũ)| / |CCTp
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|Fix(G̃ũ)| / |CCTp
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Sectional splits: characterization via a cone over Ω

Define
ConeX(Ω) = X + ∗, where ∗ adjacent to Ω

view G acting as a stabilzer of ∗

Thm (Požar, 2013). Suppose that G lifts along p : Y → ConeX(Ω). If
Z = Y \ fib∗ is connected, then G̃ along pZ : Z→ X splits with an
invariant section over Ω. Also, any X̃→ X s.t. G̃ splits with an invariant
section over Ω arises in this way.

Note.
We can explicitly find all ZZp-elementary abelian regular coverings along
which G lifts in this manner. The problem is reduced to finding invariant
subspaces of matrix group linearly representing the action of G on the
first homology group H1(X,ZZp). (M, Marušič, Potočnik, 2004).
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Sectional split lifts: characterization via voltages, I

Thm. (M, Nedela, Škoviera, 2000)
G lifts along a regular covering projection p : X̃ → X as a sectional split
extension over Ω if and only if there exists an automorphism g ]Ω : Γ→ Γ

W
g−−−−→ g(W )

ζ

y yζ
ζW

g#Ω

−−−−→ ζg(W ).

where W : Ω→ Ω.

Note. For Ω = V (X ) we get Biggs’ compatibility condition, AGT 1974.
Biggs’ compatibility condition implies that Ḡ preserves all vertices in X̃
that are labeled by 1.
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Sectional split lifts: characterization via voltages, II

Thm. (M, Nedela, Škoviera, 2000)
G lifts along a regular covering projection p : X̃ → X as a sectional split
extension over Ω if and only if the following condition holds:

The covering can be reconstructed by regular voltages ζ : X → Γ that
are (1,G )-invariant on Ω:

ζW = 1⇒ ζgW = 1, for all W : Ω→ Ω.

Example

Along p : C6 → C3 the group ZZ3 lifts as ZZ2 × ZZ3

Note.
Finding the right voltage assignment is exponentially difficult ! However,
for abelian covers there is an efficient algorithm.
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G lifts along a regular covering projection p : X̃ → X as a sectional split
extension over Ω if and only if the following condition holds:

The covering can be reconstructed by regular voltages ζ : X → Γ that
are (1,G )-invariant on Ω:

ζW = 1⇒ ζgW = 1, for all W : Ω→ Ω.

Example

Along p : C6 → C3 the group ZZ3 lifts as ZZ2 × ZZ3

Note.
Finding the right voltage assignment is exponentially difficult ! However,
for abelian covers there is an efficient algorithm.

14 / 16



Sectional split lifts: characterization via voltages, II

Thm. (M, Nedela, Škoviera, 2000)
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G lifts along a regular covering projection p : X̃ → X as a sectional split
extension over Ω if and only if the following condition holds:

The covering can be reconstructed by regular voltages ζ : X → Γ that
are (1,G )-invariant on Ω:

ζW = 1⇒ ζgW = 1, for all W : Ω→ Ω.

Example

Along p : C6 → C3 the group ZZ3 lifts as ZZ2 × ZZ3

Note.
Finding the right voltage assignment is exponentially difficult ! However,
for abelian covers there is an efficient algorithm.

14 / 16



Abelian covers: Finding sectional complements over G (b)

Adapting the algorithm for finding an orbit

Thm.

Let G = 〈g1, g2, . . . , gn〉. A potential complement 〈ḡ1, ḡ2, . . . ḡn〉
with an invariant section is uniquely determined by initial
parameters ḡi (b, 0) = (gib, ti ).

At the induction step Ω̄ is potentially a part of an invariant section,
and the ‘value’ of x in (v , x) ∈ Ω̄ is computed in terms of unknown
variables constructed so far.

A system of equations for the parameters ti ∈ Γ is obtained.

Solution gives a required complement.

Note.
Symbolic computation can be avoided., and can be carried out over ZZ.
The set of solutions, reduced modulo the defining relations for Γ, are in
bijective correspondence with all sectional complements, which, when
reduced modulo inner derivations correspond to a subgroup in H1(G , Γ).
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Thank you!
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