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A Schur ring A is called Dedekind if the formal sum of every A -subgroup is in the center of A . In
this talk, we find all finite groups 𝐺 such that every proper Schur ring over 𝐺 is Dedekind.

Theorem 1. Every proper Schur ring over 𝐺 is Dedekind if and only if 𝐺 is a Dedekind group or 𝐺 ∼= 𝐷𝑛

where 𝑛 = 4 or 𝑛 is a Fermat prime.

As a consequence of this theorem, we find all finite groups 𝐺 such that every proper Schur ring over
𝐺 is commutative or symmetric, respectively.

Corollay 2. Every proper Schur ring over 𝐺 is commutative if and only if 𝐺 is an abelian group, 𝐺 ∼= 𝑄8

or 𝐺 ∼= 𝐷𝑛 where 𝑛 = 4 or 𝑛 is a Fermat prime.

Corollary 3. Every proper Schur ring over 𝐺 is symmetric if and only if 𝐺 is an elementary abelian
2-group or 𝐺 ∼= 𝐶𝑛 where 𝑛 = 4 or 𝑛 is a Fermat prime.
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