Deformations of polygonal dendrites in the plane

Dmitry Drozdov Gorno-Altaysk State University, Gorno-Altaysk, Russia dimalek97(at)yandex.ru

Let $P \subset \mathbb{R}^2$ be a finite polygon homeomorphic to a disk, $V_P = \{A_1, ..., A_{n_P}\}$ be set of its vertices. We consider such a system of similarities $S = \{S_1, ..., S_m\}$ in \mathbb{R}^2 that: (D1) for any $i \in I$ set $P_i = S_i(P) \subset P$; (D2) for any $i \neq j$, $i, j \in I$, $P_i \cap P_j = V_{P_i} \cap V_{P_j}$; (D3) $V_P \subset \bigcup_{i \in I} S_i(V_P)$;

(D4) the set $\widetilde{P} = \bigcup_{i=1}^{m} P_i$ is contractible.

The system \mathcal{S} , satisfying the conditions (**D1–D4**), is called a *contractible P-polygonal system of similarities*. As it was proved in [1], the attractor K of such system \mathcal{S} is a dendrite. If \mathcal{S} satisfies (**D2–D4**) only, it is called a *generalised polygonal system*.

A generalised polygonal system S' is called δ -deformation of a *P*-polygonal system S, if there is such homeomorphism $f : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$, that $|f(x) - x| < \delta$ for any $x \in \mathbb{R}^2$ and $f(P_k) = P'_k$ for any k = 1, ..., m.

A vertex $A \subset V_P$ is called a *cyclic vertex*, if there is such multiindex $\mathbf{j} = j_1 j_2 \dots j_k$, that $S_{\mathbf{j}}(A) = A$. If $S_{\mathbf{j}}(z) = re^{i\varphi}(z-A) + A$, then the *parameter* λ_A of the cyclic vertex A is the number $\frac{\varphi}{\log r}$, where the choice of the value of φ is defined by the geometric configuration of the system S.

A point $B \in \bigcup_{i=1}^{m} V_{P_i}$ is subordinate to a cyclic vertex A, if for some multiindex $\mathbf{j}, S_{\mathbf{j}}(A) = B$.

Parameter matching condition. We say that a system S satisfies the parameter matching condition if for any $B \in \bigcup_{i=1}^{m} V_{P_i}$ and cyclic vertices A, A' such B is subordinate to both A and A', $\lambda_A = \lambda_{A'}$.

If the parameter matching condition for the generalised polygonal system eS is violated at some point $B \in \bigcup_{i=1}^{m} V_{P_i}$, then its attractor K is not simply-connected near the point B and therefore is not a dendrite.

Theorem. For any contractible P-polygonal system S there is such $\delta > 0$, that for any δ -deformation S' of the system S, satisfying the parameter matching condition, the attractor K(S') is a dendrite, homeomorphic to K(S).

References

 M. Samuel, A. V. Tetenov, D. A. Vaulin, Self-Similar Dendrites Generated by Polygonal Systems in the Plane. Sib. Electron. Math. Rep. 14 (2017) 737–751.