On a connection between the order of a finite group and the set of conjugacy classes size

Ilya Gorshkov Sobolev Institute of Mathematics, Novosibirsk, Russia ilygor8(at)gmail.com

In this paper, all groups are finite. The number of elements of a set π is denoted by $|\pi|$. Denote the set of prime divisors of positive integer n by $\pi(n)$, and the set $\pi(|G|)$ for a group G by $\pi(G)$. The greatest power of a prime p dividing the natural number n will be denoted by n_p . For a set of prime π and a natural number n we will denote $n_{\pi} = \prod_{p \in \pi} |n|_p$.

Let G be a group and take $a \in G$. We denote by a^G the conjugacy class of G containing a. Put $N(G) = \{|x^G|, x \in G\} \setminus \{1\}$. Denote by the $|G||_p$ number p^n such that N(G) contains α multiple of p^n and avoids the multiple of p^{n+1} . For $\pi \subseteq \pi(G)$ put $|G||_{\pi} = \prod_{p \in \pi} |G||_p$. For brevity, write |G|| to mean $|G||_{\pi(G)}$. Observe that $|G||_p$ divides $|G|_p$ for each $p \in \pi(G)$. However, $|G||_p$ can be less than $|G|_p$.

Definition. Let p and q be distinct numbers. Say that a group G satisfies the condition $\{p,q\}^*$ and write $G \in \{p,q\}^*$ if we have $\alpha_{\{p,q\}} \in \{|G||_p, |G||_q, |G||_{\{p,q\}}\}$ for every $\alpha \in N(G)$.

A. R Camina (see [1]) proved that a group G with $\{p,q\}^*$ -property is nilpotent if $N(G) = \{1, p^n, q^m, p^n q^m\}$. A. Beltram and M.J. Filipe (see [2])extended Camina's theorem in the following way: let G be a finite soluble group whose conjugacy class sizes are $\{1, n, m, nm\}$, where n and m are coprime positive integers; then G is nilpotent and the integers n and m are prime-power numbers. Q. Kong and X. Guo (see [3]) investigated groups such that the set of conjugacy class sizes of biprimary elements is precisely $1, p^{\alpha}, m, p^{\alpha}m$, where p^{α} is a prime power, (p, m) = 1 and there is a p-element whose conjugacy class size is p^{α} . They proved that in this case such groups is nilpotent and $m = q^{\beta}$ for some prime number $q \neq p$.

In the general case, a group with the $\{p,q\}^*$ -property is not nilpotent. For example, let $G \simeq L_n(k)$. Then $G \in \{p,q\}$, where p is a primitive prime divisor of $k^n - 1$ and q is a primitive prime divisor of $k^{n-1} - 1$.

In this paper we inspect the groups with $\{p,q\}^*$ -properties and trivial center.

Theorem. If $G \in \{p,q\}^*$ is a group with trivial center, where $p,q \in \pi(G)$ and p > q > 5, then $|G|_{\{p,q\}} = |G||_{\{p,q\}}$.

Corollary. In the hypotheses of the theorem, $C_G(g) \cap C_G(h) = 1$ for every p-element g and every q-element h.

Acknowledgments. The work is supported by Russian Science Foundation (project 14-21-00065).

References

- A. R. Camina, Arithmetical conditions on the conjugacy class numbers of a finite group. J. London Math. Soc. 5(2) (1972) 127-132.
- [2] A. Beltran, M. J. Felipe, Variations on a theorem by Alan Camina on conjugacy class sizes. J. Algebra 296(1) (2006) 253-266.
- [3] Q. Kong, X. Guo, On an extension of a theorem on conjugacy class sizes. Israel J. Math 179 (2010) 279-284.