Second eigenmatrices of a non-commutative association schemes obtained from steiner systems

Keiji Ito

Guraduate School of Information Sciences, Tohoku University, Sendai, Japan k.ito(at)ims.is.tohoku.ac.jp

This is joint work with Akihiro Munemasa

Definition 1. Let X be a finite set of order n and $R_0, R_1, \ldots, R_d \subset X \times X$. The adjacency matrix A_i is a (0,1)-matrix indexed by X such that $(A_i)_{x,y} = 1$ if $(x,y) \in R_i$ and $(A_i)_{x,y} = 0$ otherwise. Let I_n, J_n be the identity matrix and all-ones matrix of order n, respectively. The pair $(X, \{R_i\}_{i=0}^d)$ is called an association scheme of class d if the following hold:

- (i) $A_0 = I_n$.
- (ii) $\sum_{i=0}^{d} A_i = J_n$.
- (iii) For any $i \in \{0, 1, \dots, d\}$, there exists $i' \in \{0, 1, \dots, d\}$ such that $A_{i'} = A_i^T$.
- (iv) For any $i, j, k \in \{0, 1, \dots, d\}$, there exists $p_{i,j}^k$ such that $A_i A_j = \sum_{k=0^d} p_{i,j}^k A_k$.

An association scheme is commutative if $A_i A_j = A_j A_i$ holds for any $i, j \in \{0, 1, \dots, d\}$ and noncommutative otherwise. The algebra spanned by A_0, A_1, \ldots, A_d over \mathbb{C} is called a *adjacency algebra*. Since the adjacency algebra is semisimple, it is isomorphic to $\bigoplus_{k=1}^{r} M_{d_k}(\mathbb{C})$ for uniquely determined positive integers r, d_1, d_2, \ldots, d_r , where $\sum_{k=0}^r d_k^2 = n$. We may construct a set $\{E_k^{(i,j)} \mid 1 \le k \le r, 1 \le i, j \le d_k\}$ as a basis (see [1]). Since the adjacency algebra has $\{A_0, A_1, \ldots, A_d\}$ as a basis, there exist $q_k^{(i,j)}(l)$ such that

$$E_k^{(i,j)} = \frac{1}{n} \sum_{l=0}^d q_k^{(i,j)}(l) A_l.$$

The square matrix $Q = (q_k^{(i,j)}(l))$ is called a second eigenmatrix. Let V be a finite set of order v and \mathcal{B} be a set of k-subsets of V. The pair (V, \mathcal{B}) is called a t- (v, k, λ) design if $\lambda = \#\{B \in \mathcal{B} \mid S \subset B\}$ holds for any t-subset S of V. Let $\mathcal{F} = \{(p, V) \in V \times \mathcal{B} \mid p \in B\}$. In particular, t(v, k, 1)-design is called a steiner system. In [2], for steiner systems with t = 2, $(\mathcal{F}, \{R_i\}_{i=0}^6)$ is a non-commutative association scheme of class 6.

A quotient association scheme of class 2 is constructed from the non-commutative association scheme $(\mathcal{F}, \{R_i\}_{i=0}^6)$. The quotient association scheme is commutative, and the primitive idempotents of the quotient association scheme correspond to central idempotents of $(\mathcal{F}, \{R_i\}_{i=0}^6)$. In my talk, we reveal the correspondence and construct the second eigenmatrix of $(\mathcal{F}, \{R_i\}_{i=0}^6)$.

References

- [1] H. Kharaghani, S. Suda, Non-commutative association schemes and their fusion association schemes. arXiv:1706.06281.
- [2] M. Klin, A. Munemasa, M. Muzychuk, P. H. Zieschang, Directed strongly regular graphs obtained from coherent algebras. Linear Alg. and its App. 377 (2004) 83-109.