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Suppose that 𝑆 is a nonempty subset of a finite group 𝐺, containing with every element its inverse,
i. e. 𝑆 = 𝑆−1 = {𝑠−1 | 𝑠 ∈ 𝑆}. The Cayley graph Γ = 𝐶𝑎𝑦(𝐺,𝑆) of a group 𝐺 associated with 𝑆 is an
undirected graph with the vertex set identified with 𝐺, and vertices 𝑔, ℎ ∈ 𝐺 are joined by an edge if and
only if there exists 𝑠 ∈ 𝑆 such that 𝑠 = 𝑔−1ℎ. A graph Γ is said to be integral, if all eigenvalues of its
adjacency matrix are integers [1].

Integral Cayley graphs over abelian, dihedral and cyclic groups were investigated in [2–4].

In this talk we present new results on integral Cayley graphs over finite groups.

Theorem 1. Let 𝐺 be a finite nilpotent group and 𝑆 = 𝑆−1 be a nonempty subset of 𝐺. If 𝑆 is normal,
i. e. 𝑆𝐺 = 𝑆, and with every element 𝑠 ∈ 𝑆 it contains also all generators of the cyclic group ⟨𝑠⟩, then
Γ = 𝐶𝑎𝑦(𝐺,𝑆) is integral.

Corollary. A Cayley graph Γ = 𝐶𝑎𝑦(𝐺,𝑆) of a 2-group 𝐺 generated by a normal set 𝑆 of involutions is
integral.

Theorem 2. Let 𝐺 = 𝑆𝑛 be the symmetric group of degree 𝑛 > 2 and 𝑆 be the set of all transpositions
of 𝐺. Then the graph Γ = 𝐶𝑎𝑦(𝐺,𝑆) is integral.

Theorem 3. Let 𝐺 = 𝐴𝑛 be the alternating group of degree 𝑛 > 2 and 𝑆 = {(1𝑖𝑗) | 2 6 𝑖, 𝑗 6 𝑛, 𝑖 ̸= 𝑗}.
Then the graph Γ = 𝐶𝑎𝑦(𝐺,𝑆) is integral. Its spectrum coincides with the set

{−𝑛 + 1, 1 − 𝑛 + 1, 22 − 𝑛 + 1, . . . , (𝑛− 1)2 − 𝑛 + 1}.
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