On equitable 2-partitions of Hamming graphs H(n,q) with eigenvalues λ_2

Ivan Mogilnykh, Alexandr Valyuzhenich Sobolev Insititute of Mathematics, Novosibirsk, Russia ivmog84(at)gmail.com, graphkiper(at)mail.ru

A r-partition C_1, \ldots, C_r of the vertex set of a graph is called *equitable* with quotient matrix $A = (A_{kl})_{k,l \in \{1,\ldots,r\}}$ if for any $k,l \in \{1,\ldots,r\}$ a vertex from C_k has A_{kl} neighbors in C_l . We treat equitable partitions as functions on the vertex sets, which take value k on vertices from C_k for $k \in \{1,\ldots,r\}$.

An eigenvalue of an equitable partition is an eigenvalue of its matrix of parameters. Any eigenvalue of an equitable partition of a graph is an eigenvalue of the graph, which is known as Lloyd theorem [2].

The Hamming graph H(n,q) is the direct product of n copies of the complete graph K_q . The eigenvalues of H(n,q) are $\lambda_i(n) = (q-1)n - qi$, $i \in \{0, \ldots, n\}$. Let the function $f' : V(H(n',q)) \rightarrow \{1,\ldots,r\}$ be obtained from an equitable r-partition f of H(n,q), n < n' by adding nonessential coordinates: $f'(x_1,\ldots,x_{n'}) = f(x_1,\ldots,x_n)$. The function f' is an equitable partition of H(n',q) [3]. Moreover, $\lambda_i(n')$ is an eigenvalue of f' iff $\lambda_i(n)$ is an eigenvalue of f. An equitable partition of H(n,q) is called *reduced* if every its coordinate is essential.

The following characterization was obtained in [1]: the only reduced equitable 2-partitions of the Hamming graph H(n,q) with eigenvalue $\lambda_1(n)$ are those with n = 1. Therefore the consideration of those with $\lambda_2(n)$ is naturally to be addressed.

Construction A. Let q = 2t and consider a partition of $V(K_q)$ into complete graphs with vertex sets V_1 and V_2 , $|V_1| = |V_2| = t$. Let C_1 be the following subset of vertices H(4, q):

$$(V_1 \times V_1 \times V_1 \cup V_1 \times V_1 \times V_2 \cup V_2 \times V_1 \times V_2 \cup V_2 \times V_1 \times V_1) \times V_1 \cup (V_2 \times V_2 \times V_1 \cup V_2 \times V_2 \times V_2 \cup V_2 \times V_1 \times V_2 \cup V_2 \times V_1 \times V_1) \times V_2.$$

Proposition 1 [4]. $C_1, \overline{C_1}$ is a reduced equitable 2-partition of H(4,q) with eigenvalue $\lambda_2(n)$.

Construction B (Permutation switching construction). Consider a partition of $V(K_q)$ into n-1 complete graphs with vertex sets V_1, \ldots, V_{n-1} . For any $i \in \{1, \ldots, n-1\}$ let $f_i : V_i \times V(K_q) \to \{1, 2\}$ be an equitable 2-partition with eigenvalue -2 such that $\sum_{\alpha \in V(K_q)} f_i(x_1, \alpha) = c$, where c is independent on the choices of i in $\{1, \ldots, n\}$ and x_1 in V_i . Define the function $f : V(H(n,q)) \to \{1,2\}$ as follows: for any $i \in \{1, \ldots, n-1\}$ if x_1 in V_i then for all $x_j \in V(K_q)$, $j \ge 3$ we have $f(x_1, x_2, \ldots, x_n) = f_i(x_1, x_2)$. The function f is an equitable 2-partition of H(n,q) with eigenvalue $\lambda_2(n)$. Further, the construction allows permutation switchings to be applied. Let π_i be the transposition (2, i+1). Define $\hat{f} : V(H(n,q)) \to \{1,2\}$ to be such that for any $i \in \{1, \ldots, n-1\}$, x_1 in V_i $\hat{f}(x_1, \ldots, x_n) = f_i(\pi_i(x_1, \ldots, x_n))$.

Proposition 2. The function \hat{f} is a reduced equitable 2-partition of H(n,q) with the eigenvalue $\lambda_2(n)$.

Theorem. The only reduced equitable 2-partitions of H(n,q) with eigenvalue $\lambda_2(n)$ are either reduced equitable partitions of H(2,q) or H(3,q) or the partitions obtained by constructions A or B.

Acknowledgments. The reported study was funded by RFBR according to the research project N 18-31-00126.

References

- A. D. Meyerowitz, Cycle-balance partitions for distance-regular graphs. Discrete Math 264:1-3 (2003) 149– 165.
- [2] D. M. Cvetkovic, M. Doob, H. Sachs, Spectra of graphs, Academic Press, New York, London, (1980).
- [3] D. G. Fon-Der-Flaass, Perfect 2-colorings of a hypercube. Siberian Math. J 48 (2007) 740–745.
- [4] K. V. Vorob'ev, Alphabet lifting construction of equitable partitions of Hamming graphs. Abstracts of G2R2 (2018) submitted.