Competition Numbers and Phylogeny Numbers

Yanzhen Xiong Shanghai Jiao Tong University, Shanghai, China xyz920805(at)sjtu.edu.cn

This is joint work with Yaokun Wu and Soesoe Zaw

A graph G is a pair consisting of its vertex set $V(G) \neq \emptyset$ and its edge set $E(G) \subseteq \binom{V(G)}{2}$. For each graph G and nonnegative integer k, let $I_k(G)$ stand for the graph obtained from G by adding k isolated vertices. A vertex-induced subgraph of a graph G, or simply known as a subgraph of G, is a graph G' such that $V(G') \subseteq V(G)$ and $E(G') = E(G) \cap \binom{V(G')}{2}$. Let us write $G' \triangleleft G$ to mean that G' is a subgraph of G. A digraph D is a pair consisting of its vertex set $V(D) \neq \emptyset$ and its arc set $A(D) \subseteq V(D) \times V(D)$. For each digraph D, let D° stand for the digraph with $V(D^{\circ}) = V(D)$ and $A(D^{\circ}) = A(D) \cup \{(v, v) : v \in V(D)\}$. For any $(u, v) \in A(D)$, we call u an *in-neighbor* of v in D, and call v an *out-neighbor* of u in D. A digraph D is acyclic if it contains no cycle.

For every digraph D, the competition graph of D [1], denoted by C(D), is the graph with V(C(D)) = V(D) and with two vertices being adjacent if and only if they have at least one common out-neighbor in D. The competition number of a graph G, denoted by $\kappa(G)$, is the least nonnegative integer k such that $I_k(G)$ becomes the competition graph of an acyclic digraph. Equivalently, $\kappa(G) = \min(|V(D)| - |V(G)|)$ where D runs through all acyclic digraphs such that $G \triangleleft C(D)$.

For every digraph D, the *phylogeny graph* of D [4], denoted by $\mathcal{P}(D)$, is the competition graph of D° , that is, $\mathcal{P}(D) = \mathcal{C}(D^{\circ})$. Note that phylogeny graphs are known as moral graphs in Bayesian network theory [3]. The *phylogeny number* of a graph G, denoted by $\phi(G)$, is the least number p such that we can find a phylogeny graph of an acyclic digraph that has $p + |\mathcal{V}(G)|$ vertices and has G as an induced subgraph.

A hypergraph H comprises its vertex set $V(H) \neq \emptyset$ and its hyperedge set $\mathcal{E}(H) \subseteq \binom{V(H)}{\geq 2}$. For each hypergraph H and nonnegative integer k, let $I_k(H)$ stand for the hypergraph with $\mathcal{E}(I_k(H))$ equals $\mathcal{E}(H)$ and $V(I_k(H)) \setminus V(H)$ is a set of size k. The subhypergraph induced by a nonempty subset $A \subseteq V(H)$ is the hypergraph H' with vertex set A and hyperedge set $\mathcal{E}(H') = \{e \cap A : e \in \mathcal{E}(H), e \cap A \neq \emptyset\}$. For two hypergraphs H and H', we write $H' \lhd H$ to mean that H' is a subhypergraph of H. For every digraph D, the competition hypergraph of D [5], denoted by $\mathcal{CH}(D)$, is the hypergraph with vertex set $V(\mathcal{CH}(D)) = V(D)$ and hyperedge set

$$\mathcal{E}(\mathcal{CH}(D)) = \{ e \in \binom{\mathcal{V}(H)}{\geq 2} : \exists v \in \mathcal{V}(D) \text{ s.t. } e = \{ w : (w,v) \in \mathcal{A}(D) \} \}.$$

The ST-competition number of a hypergraph H, denoted by $\kappa_{\text{ST}}(H)$, is the least nonnegative integer k such that $I_k(H)$ becomes the competition hypergraph of an acyclic digraph. Equivalently, $\kappa_{\text{ST}}(H)$ is the least value of $|V(D) \setminus V(H)|$ where D runs through all acyclic digraphs satisfying $H \triangleleft \mathcal{CH}(D)$.

For every digraph D, the ST-phylogeny hypergraph of D, denoted by $\mathcal{PH}(D)$, is the competition hypergraph of D° , that is, $\mathcal{PH}(D) = \mathcal{CH}(D^{\circ})$. The ST-phylogeny number of a hypergraph H, which we write as $\phi_{ST}(H)$, is the least value of $|V(D) \setminus V(H)|$ where D runs through all acyclic digraphs satisfying $H \triangleleft \mathcal{PH}(D)$.

Theorem 1. The ranges of the functions $\phi - \kappa + 1$ and $\phi_{ST} - \kappa_{ST} + 1$ are both the set of nonnegative integers.

Theorem 2. For any two hypergraphs H_1 and H_2 , it holds $\phi_{ST}(H_1 \sqcup H_2) = \phi_{ST}(H_1) + \phi_{ST}(H_2)$, where $H_1 \sqcup H_2$ stands for the disjoint union of H_1 and H_2 .

Akademgorodok, Novosibirsk, Russia

For any positive integers m, n_1, \ldots, n_m , let $[m] = \{1, \ldots, m\}$ and let K^{n_1, \ldots, n_m} denote the graph with

$$\mathcal{V}(K^{n_1,\dots,n_m}) = \bigcup_{i=1}^m \mathcal{V}_i$$

where $V_i = \{v_i^j : j \in [n_i]\}$ for $i \in [m]$, and with

$$\mathbf{E}(K^{n_1,\dots,n_m}) = \{v_i^j v_{i'}^{j'} : i \neq i', j \in [n_i], j' \in [n_{i'}]\}$$

We call K^{n_1,\ldots,n_m} a complete multipartite graph with *m* parts and part size n_1,\ldots,n_m . The uniform complete multipartite graph, denoted by K_m^n , is the complete multipartite graph $K^{n,\ldots,n}$ with *m* parts and uniform part size *n*.

Theorem 3.

- (1) $\phi(K_m^2) \kappa(K_m^2) + 1 = 0$ for $m \ge 2$;
- (2) $\phi(K_m^3) \kappa(K_m^3) + 1 = 0$ for $m \ge 3$;
- (3) $\phi(K_3^n) \kappa(K_3^n) + 1 = 0$ for $n \ge 2$.

For a graph G, a *clique* of G is a subset of V(G) such that every two vertices in this subset are adjacent. A clique of G is called *maximal* if it is not properly contained in every clique of G. The *clique hypergraph* of G, denoted by $\mathcal{K}(G)$, is the hypergraph with vertex set V(G) and with the set of all maximal cliques of G as its hyperedge set. For $G = K^n$, it is easy to see that $\phi_{\text{st}}(\mathcal{K}(G)) = \kappa_{\text{st}}(\mathcal{K}(G)) = 0$.

Theorem 4. Let m, n_1, \ldots, n_m be positive integers and let $H = \mathcal{K}(K^{n_1, \ldots, n_m})$. If $m \ge 2$, then $\phi_{ST}(H) + 1 = \kappa_{ST}(H) = \prod_{\ell=1}^m n_\ell - \sum_{\ell=1}^m n_\ell + m$.

A number of Latin squares of the same order form a set of *mutually orthogonal Latin squares*, often abbreviated in the literature to MOLS, if any two of them are orthogonal. The largest size of a set of MOLS of order n is denoted by $\mathcal{L}(n)$.

Theorem 5. (Kim-Park-Sano [2, Theorem 3]) Let m and n be integers such that $3 \le n = \mathcal{L}(n) + 1 \le m$. Then $\kappa(K_m^n) \le n^2 - n + 1$.

Theorem 6. Let n be a positive integer such that $\mathcal{L}(n) = n - 1$. Then for every integer m bigger than 1, it holds $\kappa(K_m^n) \leq n^2 - 2n + 2$.

References

- [1] J. Cohen, Interval graphs and food webs: a finding and a problem. RAND Corporation (1968).
- [2] S. R. Kim, B. Park, Y. Sano, The competition numbers of complete multipartite graphs with many partite sets. Discrete Appl. Math. 160 (2012) 1176–1182.
- [3] S. C. Lee, J. Choi, S.-R. Kim, Y. Sano, On the phylogeny graphs of degree-bounded digraphs. Discrete Appl. Math. 233 (2017) 83–93.
- [4] F. S. Roberts, L. Sheng, Phylogeny numbers. Discrete Appl. Math. 87 (1998) 213-228.
- [5] M. Sonntag, H. M. Teichert, Competition hypergraphs. Discrete Appl. Math. 143 (2004) 324–329.