Problem Solving Session 1

Problem A

Let n be an integer greater than 4, and consider the action of the symmetric group $S_n = \text{Sym}(\{1, \ldots, n\})$ on the set

$$\Omega = \{\{i, j\} \mid i, j \in \{1, \dots, n\}, \ i \neq j\}.$$

- (i) Find the set $\mathcal{R} = \{R_0, R_1, R_2\}$ of all 2-orbits of this action.
- (ii) Find all the intersection numbers p_{ij}^k defined by

$$A_i A_j = \sum_{h=0}^2 p_{ij}^k A_k,$$

where $A_k = A(R_k)$ for k = 0, 1, 2.

- (iii) Find the minimal polynomial of A_k for k = 0, 1, 2.
- (iv) Find the spectrum of A_k for k = 0, 1, 2.

Problem B

A t- (v, k, λ) design is a pair $(\mathcal{P}, \mathcal{B})$, where \mathcal{P} is a set of v elements, \mathcal{B} is a family of k-element subsets of \mathcal{P} such that

$$\forall T \subseteq \mathcal{P} \text{ with } |T| = t, |\{B \in \mathcal{B} \mid T \subseteq B\}| = \lambda.$$

It is known that there exists a 4-(23,7,1) design called the Witt system $W_{23} = (\mathcal{P}, \mathcal{B})$, whose uniqueness was proved by E. Witt in 1938. In the following, I and J denote disjoint subsets of \mathcal{P} with |I| = i and |J| = j. Define

$$\lambda_I^J = |\{B \in \mathcal{B} \mid I \subseteq B, \ J \cap B = \emptyset\}|.$$

- (i) Show that, for all $i \leq 4$, λ_I^{\emptyset} depends only on i, and is independent of the choice of I. Denote these numbers by λ_i instead, and compute them for $i \leq 4$.
- (ii) Show that, for all i, j with $i + j \leq 4$, λ_I^J depends only on i and j, and is independent of the choice of I and J. Denote these numbers by λ_i^j instead, and compute them for $i + j \leq 4$.

- (iii) Assume $I \cup J \subseteq B$ for some $B \in \mathcal{B}$. Show that, for all i, j with $5 \leq i + j \leq 7$, λ_I^J depends only on i and j, and is independent of the choice of I and J. Denote these numbers by λ_i^j instead, and compute them for $5 \leq i + j \leq 7$.
- (iv) Deduce that for any distinct $B_1, B_2 \in \mathcal{B}$,

$$|B_1 \cap B_2| = 1 \text{ or } 3.$$

Problem Solving Session 2

Problem C

The Mathieu group M_{23} , discovered by É. Mathieu in 1873 is a subgroup of the symmetric group S_{23} satisfying the following property: for any two ordered quadruples $(x_1, x_2, x_3, x_4), (y_1, y_2, y_3, y_4)$, each consisting of four distinct elements of $\mathcal{P} = \{1, 2, \ldots, 23\}$, there exists a permutation $\sigma \in M_{23}$ such that

$$(x_1^{\sigma}, x_2^{\sigma}, x_3^{\sigma}, x_4^{\sigma}) = (y_1, y_2, y_3, y_4)$$

It is also known that M_{23} is the automorphism group of the Witt system $W_{23} = (\mathcal{P}, \mathcal{B})$. The 2-orbits of M_{23} on \mathcal{B} are

$$R'_{0} = \{ (B_{1}, B_{1}) \mid B_{1} \in \mathcal{B} \},\$$

$$R'_{1} = \{ (B_{1}, B_{2}) \mid B_{1}, B_{2} \in \mathcal{B}, |B_{1} \cap B_{2}| = 3 \},\$$

$$R'_{2} = \{ (B_{1}, B_{2}) \mid B_{1}, B_{2} \in \mathcal{B}, |B_{1} \cap B_{2}| = 1 \}.$$

Let

$$\Omega = \{\{i, j\} \mid i, j \in \{1, \dots, 23\}, i \neq j\},\$$

and consider the action $(M_{23}, \Omega \cup \mathcal{B})$.

- (i) Use Problem B(iii) to compute $|R'_1|$ and $|R'_2|$.
- (ii) Show that there are at least three 2-orbits contained in $\Omega \times \mathcal{B}$. Deduce that there are at least twelve 2-orbits in this action.
- (iii) Show that the dimension of the centralizer algebra $V_{\mathbb{C}}(M_{23}, \Omega \cup \mathcal{B})$ is at most 12.
- (iv) Deduce that the two permutation representations of M_{23} on Ω and \mathcal{B} are equivalent as representations.
- (v) Compare (i) and Problem A(ii) to deduce that the two permutation representations of M_{23} on Ω and \mathcal{B} are not equivalent as permutation representations.