Problem Solving Session 1

Problem A

Let n be an integer greater than 4, and consider the action of the symmetric group $S_n = Sym({1, \ldots, n})$ on the set

$$
\Omega = \{ \{i, j\} \mid i, j \in \{1, \ldots, n\}, i \neq j \}.
$$

- (i) Find the set $\mathcal{R} = \{R_0, R_1, R_2\}$ of all 2-orbits of this action.
- (ii) Find all the intersection numbers p_{ij}^k defined by

$$
A_i A_j = \sum_{h=0}^2 p_{ij}^k A_k,
$$

where $A_k = A(R_k)$ for $k = 0, 1, 2$.

- (iii) Find the minimal polynomial of A_k for $k = 0, 1, 2$.
- (iv) Find the spectrum of A_k for $k = 0, 1, 2$.

Problem B

A t - (v, k, λ) design is a pair $(\mathcal{P}, \mathcal{B})$, where $\mathcal P$ is a set of v elements, $\mathcal B$ is a family of k-element subsets of P such that

$$
\forall T \subseteq \mathcal{P} \text{ with } |T| = t, \ |\{B \in \mathcal{B} \mid T \subseteq B\}| = \lambda.
$$

It is known that there exists a $4-(23, 7, 1)$ design called the Witt system $W_{23} = (\mathcal{P}, \mathcal{B})$, whose uniqueness was proved by E. Witt in 1938. In the following, I and J denote disjoint subsets of P with $|I| = i$ and $|J| = j$. Define

$$
\lambda_I^J = |\{ B \in \mathcal{B} \mid I \subseteq B, \ J \cap B = \emptyset \}|.
$$

- (i) Show that, for all $i \leq 4$, λ_I^{\emptyset} depends only on i, and is independent of the choice of I. Denote these numbers by λ_i instead, and compute them for $i \leq 4$.
- (ii) Show that, for all i, j with $i + j \leq 4$, λ_I^J depends only on i and j, and is independent of the choice of I and \tilde{J} . Denote these numbers by λ_i^j i instead, and compute them for $i + j \leq 4$.
- (iii) Assume $I \cup J \subseteq B$ for some $B \in \mathcal{B}$. Show that, for all i, j with $5 \leq i + j \leq 7$, λ_I^J depends only on i and j, and is independent of the choice of I and J. Denote these numbers by λ_i^j i instead, and compute them for $5 \leq i + j \leq 7$.
- (iv) Deduce that for any distinct $B_1, B_2 \in \mathcal{B}$,

$$
|B_1 \cap B_2| = 1
$$
 or 3.

Problem Solving Session 2

Problem C

The Mathieu group M_{23} , discovered by É. Mathieu in 1873 is a subgroup of the symmetric group S_{23} satisfying the following property: for any two ordered quadruples $(x_1, x_2, x_3, x_4), (y_1, y_2, y_3, y_4)$, each consisting of four distinct elements of $\mathcal{P} = \{1, 2, ..., 23\}$, there exists a permutation $\sigma \in M_{23}$ such that

$$
(x_1^{\sigma}, x_2^{\sigma}, x_3^{\sigma}, x_4^{\sigma}) = (y_1, y_2, y_3, y_4).
$$

It is also known that M_{23} is the automorphism group of the Witt system $W_{23} = (\mathcal{P}, \mathcal{B})$. The 2-orbits of M_{23} on \mathcal{B} are

$$
R'_0 = \{ (B_1, B_1) \mid B_1 \in \mathcal{B} \},
$$

\n
$$
R'_1 = \{ (B_1, B_2) \mid B_1, B_2 \in \mathcal{B}, |B_1 \cap B_2| = 3 \},
$$

\n
$$
R'_2 = \{ (B_1, B_2) \mid B_1, B_2 \in \mathcal{B}, |B_1 \cap B_2| = 1 \}.
$$

Let

$$
\Omega = \{ \{i, j\} \mid i, j \in \{1, \dots, 23\}, i \neq j \},\
$$

and consider the action $(M_{23}, \Omega \cup \mathcal{B})$.

- (i) Use Problem B(iii) to compute $|R'_1|$ and $|R'_2|$.
- (ii) Show that there are at least three 2-orbits contained in $\Omega \times \mathcal{B}$. Deduce that there are at least twelve 2-orbits in this action.
- (iii) Show that the dimension of the centralizer algebra $V_c(M_{23}, \Omega \cup \mathcal{B})$ is at most 12.
- (iv) Deduce that the two permutation representations of M_{23} on Ω and β are equivalent as representations.
- (v) Compare (i) and Problem A(ii) to deduce that the two permutation representations of M_{23} on Ω and β are not equivalent as permutation representations.