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There is a written proof of every mathematical theorem,
in Russian.

– I couldn’t find the source
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▷ ОБ ОДНОМ МЕТОДЕ ПОСТРОЕНИЯ ПРИМИТИВНЫХ
ГРАФОВ
M. Klin 1974
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Evdokimov S. A. and Ponomarenko I. N. 1999

▷ Primitivity of Permutation Groups, Coherent Algebras and
Matrices
G. Jones, M. Klin and Y. Moshe 2000
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Outline

1. monotone eigenvector of second largest
eigenvalue for certain equitable partitions.

2. classification of Q-polynomial association
scheme in low dimension.

3. partial dual balanced + Q-polynomial
=⇒ P-polynomial.
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Association scheme
Definition
Let X be a finite set of size n. Let {Ri}di=0 be a collection of binary relations
Ri ⊆ X× X. Let Ai be the corresponding adjacency matrix of Ri.
They satisfy the following properties.

1. A0 = I.
2. A0 + A1 + · · ·+ Ad = J.
3. ATi ∈ {A0,A1, . . . ,Ad}.
4. AiAj =

∑d
k=0 pkijAk.

Then we call X = (X, {Ri}di=0) an association scheme (A.S.).
5. AiAj = AjAi. (commutative A.S.)
6. ATi = Ai. (symmetric A.S. =⇒ commutative A.S.)

Roughly, a symmetric association scheme is a matrix algebra with
0-1 matrix basis which is closed under transpose, product and
entrywise product.
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Bose-Mesner algebra

There is another basis for commutative A.S., called idempotents,
which are the projection matrices to the common eigenspaces.

1. E0 =
1
|X|J.

2. E0 + E1 + · · ·+ Ed = I.
3. EiEj = δijEi.
4. Ei ◦ Ej =

∑d
k=0 qkijEk

1. A0 = I.
2. A0 +A1 + · · ·+Ad = J.
3. Ai ◦Aj = δijAi.
4. AiAj =

∑d
k=0 pkijAk

The transition matrices P and Q between the two basis are called
eigenmatrices.

(A0,A1, . . . ,Ad) = (E0,E1, . . . ,Ed)P
|X| (E0,E1, . . . ,Ed) = (A0,A1, . . . ,Ad)Q

PQ = |X| I
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Polynomial schemes

Definition (metric/P-polynomial)
A symmetric association scheme is called metric (or P-polynomial) if there exists
an ordering of relations such that Ai = vi(A1), where vi is a polynomial of degree
i.

Definition (cometric/Q-polynomial)
A symmetric association scheme is called cometric (or Q-polynomial) if there
exists an ordering of primitive idempotents such that Ei = v∗i (E1), where v∗i is a
polynomial of degree i, and the product is Schur product.

▷ P-polynomial association scheme = distance-regular graph
▷ Q-polynomial association scheme = ?

9 of 28Da ZhaoSJTUU



Definition (Cosine matrix/Normalized eigenmatrix)
Cosine matrix C := QM−1 = K−1PH. We index the rows of C by A0,A1, . . . ,Ad
and columns by E0,E1, . . . ,Ed respectively.

There is a standard result concerning sign-changes of cosines of
polynomial schemes.
Theorem
The i-th row (column) of C has exactly i sign-changes, and its difference has
exactly i− 1 sign-changes, if the association scheme is cometric (metric).

Corollary
The 1st row (column) is monotone (decreasing) if the association is cometric
(metric).
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Block monotonicity of eigenvector

Definition
A matrix B is called blockwise principal unimodal
if its columns are blockwise unimodal and the
peaks are attained at the diagonal blocks.


8 2 0 0 0

3 2 3 1 2
4 3 2 2 1

0 1 1 3 5
0 0 2 4 4



Theorem (Wu-Z)
Let B be a real block matrix which satisfy the following conditions:

1. B+ cI is blockwise principal unimodal for some c ∈ R,
2. B has constant row sum k,
3. B is diagonalizable.

Let ρ = MaxReal
{
SpecB− k1

}
, the maximum real eigenvalue of A besides k (if

k is a multiple eigenvalue, we only remove one multiplicity). Then there exists a
blockwise monotone (right) eigenvector associated to ρ.
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Finiteness of metric/cometric schemes

Theorem (Godsil 1988)
There are only finitely many connected co-connected distance-regular graphs with
an eigenvalue multiplicity m for all m ≥ 3.

Theorem (Bang-Dubickas-Koolen-Moulton 2015)
There are only finitely many connected distance-regular graphs of valency k1 for
all k1 ≥ 3.

Theorem (Martin-Williford 2009)
There are finitely many cometric association schemes with multiplicity m1 for all
m1 ≥ 3.

Theorem (Personal communication with Martin)
There are finitely many cometric association schemes with a relation of valency k
for all k ≥ 3.
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Classification of DRGs with small valency

Theorem (Biggs-Boshier-ShaweTaylor 1986)
There are 13 distance-regular graphs of valency k = 3.

Theorem (Brouwer-Koolen 1999)
There are 17 possible parameters of distance-regular graphs of valency k = 4,
each of which is determined and unique except possibly one parameter.

We aim to finish the classification dual to these two theorems.
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Spherical representation

Definition (spherical representation)
The spherical representation of a symmetric A.S. X = (X, {Ri}di=0) with respect
to Ei is the mapping X→ Rmi defined by

x→ x =
√

|X|
mi
Eiϕx

where ϕx is the characteristic vector of x.

The image is on the unit sphere Smi−1 ⊂ Rmi .
We identify X and X when the embedding is faithful.
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Classification of dual DRGs in R3

Theorem (Bannai-Bannai 2006)
The only primitive association scheme with m1 = 3 is tetrahedron.

Theorem (Bannai-Z)
Let X be a symmetric association scheme. If X has a faithful spherical
embeddings X with m1 = 3 in R3, then it must be one of the followings:

1. the regular tetrahedron (|X| = 4);
2. the regular octahedron (|X| = 6);
3. the cube (|X| = 8);
4. the regular icosahedron (|X| = 12);
5. the quasi-regular polyhedron of type [3, 4, 3, 4] (|X| = 12);
6. the regular dodecahedron (|X| = 20);

*The quasi-regular polyhedron of type [3, 5, 3, 5] (|X| = 30) is non-commutative.

Corollary
The Q-polynomial association schemes with m1 = 3 are (1-4) in the above list.
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Partial classification of dual DRGs in R4

Theorem (Bannai-Z)
Let X be a Q-polynomial association scheme with m1 = 4 in R4, then one of the
following holds.

1. k1 = 3, X is Petersen graph O3, or complete bipartite graph K3,3;
2. k1 = 4, X is complete graph K5, 5-cross polytope, L(K3,3), or 4-cube Q4;
3. k1 = 5, X is geometrically locally pentagon;
4. k1 = 6, X is geometrically locally (twisted) 3-prism; (16-cell is an example)
5. k1 = 7, impossible;
6. 8 ≤ k1 ≤ 12, ongoing. (24-cell is an example).
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Conjectures revisited

Conjecture (Babai)
The maximum valency of a primitive association scheme is bounded by a function
of the minimum (non-trivial) valency, i.e., kmax ≤ f(kmin).

Conjecture (Bannai-Ito)
{primitive metric A.S.} = {primitive cometric A.S.} for large class number d.
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Distribution graph and Representation graph

Definition (distribution graph)
Given an association scheme X = (X, {Ri}di=0), the distribution graph ∆Ai with
respect to Ai is a graph whose vertices are 0, 1, . . . , d, and two vertices j and k
are adjacent if and only if pkij > 0.

Definition (representation graph)
Given an association scheme X = (X, {Ri}di=0), the representation graph ∆Ei
with respect to Ei is a graph whose vertices are 0, 1, . . . , d, and two vertices j and
k are adjacent if and only if qkij > 0.

X is P-polynomial w.r.t A if and only if ∆A is a path.
X is Q-polynomial w.r.t E if and only if ∆E is a path.
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Balanced condition

Definition (balanced)
Let x, y ∈ X and i, j ∈ {0, 1, . . . , d} be arbitrarily fixed. Then we say the
spherical representation ρ = ρE is balanced, if there exists an α ∈ R, such that∑

z∈Γi(x)∩Γj(y)
ρ(z)−

∑
z∈Γj(x)∩Γi(y)

ρ(z) = α(ρ(x)− ρ(y)). (1)

For (x, y) ∈ Rk, we have α = γkij, where

γkij := pkij
θ∗i − θ∗j
θ∗0 − θ∗k

.

If 1 holds for fixed i and j, then ρ is called {i, j}-balanced.

Theorem (Terwilliger 1987)
Suppose X is Q-polynomial with respect to E, then the spherical embedding ρE is
balanced.
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Relation between metric and cometric schemes

Theorem (Terwilliger 1987)
Let X be a P-polynomial association scheme. Suppose one of its representation
graph is a tree, then it is a path, hence X is Q-polynomial.

Theorem (Bannai-Bannai-Ito Book)
Let X be a P-polynomial association scheme. Suppose ρ = ρE is a
non-degenerate spherical representation and it is {1, 2}-balanced, then X is
Q-polynomial with respect to E.

Theorem
Let X be a Q-polynomial association scheme. Suppose A is a connecting relation
and it is {1, 2}-dual balanced, then X is P-polynomial with respect to A.
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Scaffold – tensor represented by diagrams

Definition (Scaffold)
Let X be an index set (for basis), and let A be a subalgebra of MatX(C).
Given a digraph G = (V(G),E(G)).
Take a subset R ⊆ V(G) be the red nodes.
Assign matrix weights to arcs w : E(G) → A.
The scaffold S(G,R,w) is defined as follows.

S(G,R,w) =
∑

φ:V(G)→X

∏
e=(a,b)∈E(G)

w(e)φ(a),φ(b)
⊗
r∈R

φ̂(r)

It is an element of V⊗|R|. The white nodes are the ‘dumb variables’.
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Balanced condition rewritten

Definition
A primitive idempotent Et is called balanced if there exists γkij such that the
following holds for all i, j.

Et
A
i

A j
−

Et
A
i

A j
=

d∑
k=1

γkij


Et

A
0

A k
−

Et
A
k

A0


(2)

If Equation (2) holds for fixed i and j, then Et is called {i, j}-balanced.

If Equation (2) holds, then γkij = pkij
θ∗i −θ∗j
θ∗0−θ∗k

, where θ∗i is the
eigenvalue of Ai associated to Et.
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Dual balanced condition

Definition
An adjacency relation Ar is called dual balanced if there exists ηkij such that the
following holds for all i, j.

Ar

Ei

Ej

− Ar

Ej

Ei

=
d∑
k=1

ηkij

 Ar

E0

Ek

− Ar

Ek

E0

 (3)

If Equation (3) holds for fixed i and j, then Ar is called {i, j}-dual balanced.

If Equation (3) holds, then ηkij = qkij
θi−θj
θ0−θk

, where θi is the
eigenvalue of Ar associated to Ei.
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Proofs get simplified

0 = A
E1

E2

− A
E2

E1

−
3∑
k=1

ηk12

 A
E0

Ek

− A
Ek

E0

 .

Taking entrywise product of both sides with
Ar

As

, we obtain

0 =

{
θ∗r v∗2(θ∗s )− θ∗s v∗2(θ∗r )−

3∑
k=1

ηk12[v∗k(θ∗s )− v∗k(θ∗r )]
}

A
Ar

As

.
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