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Checklist: Minimum support problem

Eigenfunctions: adjacency matrix/local de�nition

Weight distribution lower bound

Delsarte cliques: |C| = 1− k/θmin
Eigenfunctions corresponding to θmin

Eigenfunctions corresponding to θmin and achieving the weight
distribution bound
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Meet a bilinear forms graph, Bilq(n,m)

De�nition

Vertices: all matrices of size n×m with the elements from Fq
Edges: U ∼ V ⇔ rk(U − V ) = 1

Example: n = m = 2, F2 [
0 0
0 0

]
∼
[
1 1
0 0

]
[
0 0
0 0

]
�
[
1 0
0 1

]
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Meet a bilinear forms graph, Bilq(n,m)

Basic information

Distance-regular graph

Diameter D = min(n,m) //from here we assume n ≥ m
θmin = −

[
D
1

]
q
= −(qm − 1)/(q − 1)

|C| = qn

Weight distribution bound:
m∑
i=0

[
m
i

]
q
· qi(i−1)/2

Local structure

(q − 1)-clique extension of
[
n
1

]
q
×
[
m
1

]
q
-lattice
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�Explicit� structure of cliques in Bilq(n,m)

Question: what are the adjacencies of some vertex U?

Canonical directions

Let {ei | ei ∈ Fmq } be a set of vectors with a �rst non-zero element
equal to 1. Example: [0, 1], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4] (case F5)

Equivalence classes in F ∗
qn

Let {δi | δi ∈ F ∗
qn} be a set of column-vectors with a �rst non-zero

element equal to 1.

Example:

[
0
1

]
,

[
1
0

]
,

[
1
a1

]
,

[
1
a2

]
, . . . ,

[
1

aq−1

]
(case Fq2)

Denote K(δi) = {at · δi | at ∈ F ∗
q }

Neighbours of U

U + at · δj · ei
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Strongly-regular case: Bilq(n, 2)

Case Bilp(2, 2) where p is prime:

Theorem: Let a1 be a generating element of the multiplicative group

F ∗
p . Denote a0 = 0; a2 = a21; . . . ; ap−2 = ap−2

1 ; ap−1 = ap−1
1 = 1.

Choose δ ∈ Fp, such that δ 6= −ξ2 for all ξ ∈ Fp. The independent set[
0 0
0 1

]
,

 1
a2i δ+1

ai
a2i δ+1

aiδ
a2i δ+1

a2i δ

a2i δ+1

 together with the vertices

[
0 0
0 0

]
,

[
1

a2i δ+1
−ai
a2i δ+1

aiδ
a2i δ+1

1
a2i δ+1

]
, where i = 0 . . . p− 1, form a minimum

eigensupport as two parts of a complete bipartite graph Kp+1,p+1.
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Ok, but how about larger diameters?

Question: does there exist an eigenfunction corresponding to θmin
that achieves the weight distribution bound?

Spoiler alert: No
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Here comes the Grassmann graph Jq(n+m,m)

De�nition

Vertices: all m-dimensional subspaces of (n+m)-dimensional vector
space over Fq
Edges: U ∼ V ⇔ dim(U ∩ V ) = m− 1

Local structure

q-clique extension of
[
n
1

]
q
×
[
m
1

]
q
-lattice

Why do we need it?

Bilq(n,m) can be considered as a subgraph of Jq(n+m,m) as follows:
given a �xed subspace W of a dimension n, all m-spaces U such that
U ∩W = ∅ are the vertices of Bilq(n,m)
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Connection between eigenfunctions in Bilq(n,m) and
Jq(n+m,m)

Delsarte cliques embeddings

If f is an eigenfunction in Bilq(n,m) corresponding to θmin such
that it achieves the weight distribution bound, then it will be an
eigenfunction of Jq(n+m,m) corresponding to the same minimal
eigenvalue

Known is the characterization of Grassmann graph eigenfunctions
with minimum support: they correspond to all maximal totally
isotropic spaces of dimension m for a nondegenerate quadratic form

We can prove that there does not exist an n-space such that it
intersects with no maximal totally isotropic subspaces.

Contradiction.
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Thank you for your attention!
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