Minimum supports of eigenfunctions in bilinear forms graphs

> Ev Sotnikova Sobolev Institute of Mathematics Novosibirsk, Russia

Graphs and Groups, Representations and Relations 15 August, 2018

イロト イ御 ト イヨ ト イヨ ト

 \equiv

 \bullet Eigenfunctions: adjacency matrix/local definition

 \bar{z}

- Eigenfunctions: adjacency matrix/local definition
- Weight distribution lower bound

 \bar{z}

イタト イミト イモト

4 0 8

- Eigenfunctions: adjacency matrix/local definition
- Weight distribution lower bound
- Delsarte cliques: $|C| = 1 k/\theta_{min}$

K ロ K K @ K K 할 X K 할 X T 할 X YO Q @

- Eigenfunctions: adjacency matrix/local definition
- Weight distribution lower bound
- Delsarte cliques: $|C| = 1 k/\theta_{min}$
- Eigenfunctions corresponding to θ_{min}

イロト イ押 トイヨト イヨト 一重

- Eigenfunctions: adjacency matrix/local definition
- Weight distribution lower bound
- Delsarte cliques: $|C| = 1 k/\theta_{min}$
- Eigenfunctions corresponding to θ_{min}
- **Eigenfunctions corresponding to** θ_{min} **and achieving the weight** distribution bound

KOD KOD KED KED E YORA

メロト メタト メモト メモト 一毛

Meet a bilinear forms graph, $Bil_q(n, m)$

Definition

Vertices: all matrices of size $n \times m$ with the elements from F_q Edges: $U \sim V \Leftrightarrow rk(U-V) = 1$

Definition

Vertices: all matrices of size $n \times m$ with the elements from F_q Edges: $U \sim V \Leftrightarrow rk(U-V) = 1$

Example: $n = m = 2, F_2$ $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$ $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

K ロ ▶ K 御 ▶ K 결 ▶ K 결 ▶ ○ 결

Basic information

È

メロト メタト メミト メミト

Basic information

Distance-regular graph

Ev Sotnikova $4/10$

 $\mathcal{A} \oplus \mathcal{B}$ and $\mathcal{A} \oplus \mathcal{B}$ and $\mathcal{A} \oplus \mathcal{B}$

4 0 8

Basic information

- Distance-regular graph
- Diameter $D = min(n, m)$ //from here we assume $n \geq m$

重

Basic information

- Distance-regular graph
- Diameter $D = min(n, m)$ //from here we assume $n \geq m$

•
$$
\theta_{min} = -\begin{bmatrix} D \\ 1 \end{bmatrix}_q = -(q^m - 1)/(q - 1)
$$

重

Basic information

- Distance-regular graph
- Diameter $D = min(n, m)$ //from here we assume $n \geq m$

•
$$
\theta_{min} = -\begin{bmatrix} D \\ 1 \end{bmatrix}_q = -(q^m - 1)/(q - 1)
$$

$$
\bullet \ |C| = q^n
$$

重

Meet a bilinear forms graph, $Bil_a(n, m)$

Basic information

- Distance-regular graph
- Diameter $D = min(n, m)$ //from here we assume $n \geq m$

•
$$
\theta_{min} = -\begin{bmatrix} D \\ 1 \end{bmatrix}_q = -(q^m - 1)/(q - 1)
$$

$$
\bullet \ |C| = q^n
$$

Weight distribution bound: $\sum_{n=1}^{m}$ $i=0$ $\left\lceil \frac{m}{i} \right\rceil$ $\left[\begin{smallmatrix} n \ i \end{smallmatrix} \right]_q \cdot q^{i(i-1)/2}$

 $\mathcal{A}(\overline{\mathcal{O}}) \models \mathcal{A}(\overline{\mathcal{O}}) \models \mathcal{A}(\overline{\mathcal{O}}) \models \mathcal{A}(\overline{\mathcal{O}}) \models \mathcal{A}(\overline{\mathcal{O}})$

Meet a bilinear forms graph, $Bil_q(n, m)$

Basic information

- Distance-regular graph
- Diameter $D = min(n, m)$ //from here we assume $n \geq m$

•
$$
\theta_{min} = -\begin{bmatrix} D \\ 1 \end{bmatrix}_q = -(q^m - 1)/(q - 1)
$$

$$
\bullet \ |C| = q^n
$$

• Weight distribution bound:
$$
\sum_{i=0}^{m} \begin{bmatrix} m \\ i \end{bmatrix}_q \cdot q^{i(i-1)/2}
$$

Local structure

$$
(q-1)
$$
-clique extension of $\begin{bmatrix} n \\ 1 \end{bmatrix}_q \times \begin{bmatrix} m \\ 1 \end{bmatrix}_q$ -lattice

"Explicit" structure of cliques in $Bil_q(n, m)$

メロト メタト メモト メモト 一毛

"Explicit" structure of cliques in $Bil_q(n, m)$

Question: what are the adjacencies of some vertex U?

"Explicit" structure of cliques in $Bil_a(n, m)$

Question: what are the adjacencies of some vertex U ?

Canonical directions

Let $\{e_i \mid e_i \in F_q^m\}$ be a set of vectors with a first non-zero element equal to 1. Example: $[0, 1]$, $[1, 0]$, $[1, 1]$, $[1, 2]$, $[1, 3]$, $[1, 4]$ (case F_5)

イタト イミト イモト

"Explicit" structure of cliques in $Bil_{\alpha}(n, m)$

Question: what are the adjacencies of some vertex U ?

Canonical directions

Let $\{e_i \mid e_i \in F_q^m\}$ be a set of vectors with a first non-zero element equal to 1. Example: $[0, 1]$, $[1, 0]$, $[1, 1]$, $[1, 2]$, $[1, 3]$, $[1, 4]$ (case F_5)

Equivalence classes in $F_{q^n}^*$

Let $\{\delta_i \mid \delta_i \in F_{q^n}^*\}$ be a set of column-vectors with a first non-zero element equal to 1.

Example: $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$ 1 $\Big]$, $\Big[\frac{1}{2}$ θ $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ a_1 $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ a_2 $\Big]$, ..., $\Big[$ $\Big]$ a_{q-1} $\Big]$ (case F_{q^2}) Denote $K(\bar{\delta}_i) = \{a_t \cdot \delta_i \mid a_t \in F_q^*\}$

K ロ K K @ K K 할 K K 할 K (할

"Explicit" structure of cliques in $Bil_a(n, m)$

Question: what are the adjacencies of some vertex U ?

Canonical directions

Let $\{e_i \mid e_i \in F_q^m\}$ be a set of vectors with a first non-zero element equal to 1. Example: $[0, 1]$, $[1, 0]$, $[1, 1]$, $[1, 2]$, $[1, 3]$, $[1, 4]$ (case F_5)

Equivalence classes in $F_{q^n}^*$

Let $\{\delta_i \mid \delta_i \in F_{q^n}^*\}$ be a set of column-vectors with a first non-zero element equal to 1.

Example:
$$
\begin{bmatrix} 0 \\ 1 \end{bmatrix}
$$
, $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 1 \\ a_1 \end{bmatrix}$, $\begin{bmatrix} 1 \\ a_2 \end{bmatrix}$, ..., $\begin{bmatrix} 1 \\ a_{q-1} \end{bmatrix}$ (case F_{q^2})
Denote $K(\delta_i) = \{a_t \cdot \delta_i \mid a_t \in F_q^*\}$

Neighbours of U

$$
U + a_t \cdot \delta_j \cdot e_i
$$

Strongly-regular case: $Bil_q(n, 2)$

Case $Bil_p(2, 2)$ where p is prime:

Theorem: Let a_1 be a generating element of the multiplicative group F_p^* . Denote $a_0 = 0$; $a_2 = a_1^2$; ...; $a_{p-2} = a_1^{p-2}$ i_1^{p-2} ; $a_{p-1} = a_1^{p-1} = 1$. Choose $\delta \in F_p$, such that $\delta \neq -\xi^2$ for all $\xi \in F_p$. The independent set $\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$ $\sqrt{ }$ $\overline{}$ 1 $a_i^2\delta+1$ a_i $a_i^2\delta+1$ $a_i\delta$ $a_i^2\delta+1$ $i^{\,0}$ $\bar{ }$ \cdots \cdots $a_i^2\delta$ $a_i^2\delta+1$ 1 together with the vertices $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ $\int \frac{1}{a_i^2 \delta + 1}$ $-a_i$ $a_i^2\delta+1$ $a_i\delta$ $a_i^2\delta+1$ $\frac{1}{2}$ eigensupport as two parts of a complete bipartite graph $K_{p+1,p+1}$. 1 $\left[\begin{matrix} \frac{-a_i}{a_i^2\delta+1} \\ \frac{1}{a_i^2\delta+1} \end{matrix}\right]$, where $i = 0 \dots p-1$, form a minimum

◆ロト → 御ト → ヨト → ヨト → ヨ

Ok, but how about larger diameters?

Question: does there exist an eigenfunction corresponding to θ_{min} that achieves the weight distribution bound?

4 ロ) - 4 @) - 4 ミ) - 4 ミ) - 2

Ok, but how about larger diameters?

Question: does there exist an eigenfunction corresponding to θ_{min} that achieves the weight distribution bound?

Spoiler alert: No

4 ロ) - 4 @) - 4 ミ) - 4 ミ) - 2

メロト メタト メモト メモト 一毛

Definition

Vertices: all m-dimensional subspaces of $(n + m)$ -dimensional vector space over F_q Edges: $U \sim V \Leftrightarrow dim(U \cap V) = m - 1$

 $A \oplus A \rightarrow A \oplus A \rightarrow A \oplus A$

Definition

Vertices: all m-dimensional subspaces of $(n + m)$ -dimensional vector space over F_q Edges: $U \sim V \Leftrightarrow dim(U \cap V) = m - 1$

Local structure q-clique extension of $\begin{bmatrix} n \\ 1 \end{bmatrix}$ $\left[\begin{smallmatrix} n \\ 1 \end{smallmatrix}\right]_q \times \left[\begin{smallmatrix} m \\ 1 \end{smallmatrix}\right]$ $\left[\begin{smallmatrix}m\1\end{smallmatrix}\right]_q$ -lattice

メ御 トメ ミト メ ヨト

Definition

Vertices: all m-dimensional subspaces of $(n + m)$ -dimensional vector space over F_q Edges: $U \sim V \Leftrightarrow dim(U \cap V) = m - 1$

Local structure

q-clique extension of $\begin{bmatrix} n \\ 1 \end{bmatrix}$ $\left[\begin{smallmatrix} n \\ 1 \end{smallmatrix}\right]_q \times \left[\begin{smallmatrix} m \\ 1 \end{smallmatrix}\right]$ $\left[\begin{smallmatrix}m\1\end{smallmatrix}\right]_q$ -lattice

Why do we need it?

 $Bil_q(n,m)$ can be considered as a subgraph of $J_q(n+m,m)$ as follows: given a fixed subspace W of a dimension n, all m-spaces U such that $U \cap W = \emptyset$ are the vertices of $Bil_{\alpha}(n, m)$

K ロ ▶ K 御 ▶ K ヨ ▶ K ヨ ▶

Connection between eigenfunctions in $Bil_q(n, m)$ and $J_q(n+m,m)$

Connection between eigenfunctions in $Bil_q(n, m)$ and $J_q(n+m,m)$

• Delsarte cliques embeddings

Connection between eigenfunctions in $Bil_a(n, m)$ and $J_q(n+m,m)$

- Delsarte cliques embeddings
- **If** f is an eigenfunction in $Bil_q(n,m)$ corresponding to θ_{min} such that it achieves the weight distribution bound, then it will be an eigenfunction of $J_q(n+m, m)$ corresponding to the same minimal eigenvalue

Connection between eigenfunctions in $Bil_q(n, m)$ and $J_q(n+m,m)$

- Delsarte cliques embeddings
- **If** f is an eigenfunction in $Bil_q(n,m)$ corresponding to θ_{min} such that it achieves the weight distribution bound, then it will be an eigenfunction of $J_q(n+m, m)$ corresponding to the same minimal eigenvalue
- Known is the characterization of Grassmann graph eigenfunctions with minimum support: they correspond to all maximal totally isotropic spaces of dimension m for a nondegenerate quadratic form

イロメ イ団メ イモメ イモメー 毛

Connection between eigenfunctions in $Bil_q(n, m)$ and $J_q(n+m,m)$

- Delsarte cliques embeddings
- **If** f is an eigenfunction in $Bil_q(n,m)$ corresponding to θ_{min} such that it achieves the weight distribution bound, then it will be an eigenfunction of $J_q(n+m, m)$ corresponding to the same minimal eigenvalue
- Known is the characterization of Grassmann graph eigenfunctions with minimum support: they correspond to all maximal totally isotropic spaces of dimension m for a nondegenerate quadratic form
- \bullet We can prove that there does not exist an *n*-space such that it intersects with no maximal totally isotropic subspaces.

イロト 不優 ト 不重 ト 不重 トー 重

Connection between eigenfunctions in $Bil_q(n, m)$ and $J_q(n+m,m)$

- Delsarte cliques embeddings
- **If** f is an eigenfunction in $Bil_q(n,m)$ corresponding to θ_{min} such that it achieves the weight distribution bound, then it will be an eigenfunction of $J_q(n+m, m)$ corresponding to the same minimal eigenvalue
- Known is the characterization of Grassmann graph eigenfunctions with minimum support: they correspond to all maximal totally isotropic spaces of dimension m for a nondegenerate quadratic form
- \bullet We can prove that there does not exist an *n*-space such that it intersects with no maximal totally isotropic subspaces.
- Contradiction.

イロト 不優 ト 不重 ト 不重 トー 重

Thank you for your attention!

K ロ ▶ K @ ▶ K 경 ▶ K 경 ▶ X 경