Relative *t*-designs on one shell of Johnson association schemes

Yan Zhu (朱 艳)

Shanghai University

Joint with Eiichi Bannai (坂内 英一)

August 7, 2018

G2R2 2018 @ Novosibirsk

Outline

- **1** Relative *t*-designs in Q-polynomial association scheme
- ² Designs in product association scheme
- **3** Main theorem
- **4** Tight relative *t*-designs on one shell

Association scheme

Let *X* be a finite set with $|X| = n$ and $\mathcal{R} = \{R_0, R_1, \ldots, R_d\} \subseteq X \times X$. The adjacency matrix of (X, R_i) is given by

$$
(A_i)_{xy} = \begin{cases} 1, & \text{if } (x, y) \in R_i \\ 0, & \text{otherwise.} \end{cases}
$$

- $\mathfrak{X} = (X, \{R_i\}_{0 \leq i \leq d})$ is called a symmetric association scheme of class *d* if $A_0 = I$.
	- $\sum_{i=0}^{d} A_i = J$.
	- *= <i>A_i* for 1 *≤ i < d*.

$$
\blacksquare A_i A_j = \sum_{k=0}^d p_{i,j}^k A_k.
$$

Q-polynomial association scheme

 $A = span{A_0, A_1, \ldots, A_d}$ is called Bose-Mesner algebra of \mathfrak{X} . Since $\mathfrak X$ is symmetric, $\mathcal A$ has another basis called primitive idempotents ${E_0, E_1, \ldots, E_d}$ with respect to entry-wise multiplication.

- $E_0 = \frac{1}{|X|} J$.
- $\sum_{i=0}^{d} E_i = I$.
- $E_i E_j = \delta_{i,j} E_i$.
- $E_i \circ E_j = \sum_{k=0}^d q_{i,j}^k E_k$.

Q-polynomial association scheme

 $A = span{A_0, A_1, \ldots, A_d}$ is called Bose-Mesner algebra of \mathfrak{X} . Since $\mathfrak X$ is symmetric, $\mathcal A$ has another basis called primitive idempotents ${E_0, E_1, \ldots, E_d}$ with respect to entry-wise multiplication.

- $E_0 = \frac{1}{|X|} J$.
- $\sum_{i=0}^{d} E_i = I$.
- $E_i E_j = \delta_{i,j} E_i$.
- $E_i \circ E_j = \sum_{k=0}^d q_{i,j}^k E_k$.

A symmetric association scheme $\mathfrak X$ is called Q-polynomial with respect to the ordering E_0, E_1, \ldots, E_d , if there exists a polynomial $u_i(x)$ of degree *j* such that $E_j = u_j(E_1^{\circ})$, where E_1° means entry-wise multiplication.

Johnson association scheme

Given positive integers v, k with $v \ge 2k$, let $V = \{1, 2, \dots, v\}$ and $X = \binom{V}{k}$. Define

$$
R_r = \{(x, y) \in X \times X : |x \cap y| = k - r\}.
$$

Then $J(v, k) = (X, \{R_i\}_{i=0}^k)$ is Johnson association scheme.

It is known that $J(v, k)$ is a Q-polynomial association scheme.

Johnson association scheme

Given positive integers v, k with $v \ge 2k$, let $V = \{1, 2, \dots, v\}$ and $X = \binom{V}{k}$. Define

$$
R_r = \{(x, y) \in X \times X : |x \cap y| = k - r\}.
$$

Then $J(v, k) = (X, \{R_i\}_{i=0}^k)$ is Johnson association scheme.

It is known that $J(v, k)$ is a Q-polynomial association scheme.

For a fixed point $u_0 = \{1, 2, \dots, k\}$, the *r*-th shell of $J(v, k)$ is defined by

 $X_r := \{x : |x \cap u_0| = k - r\}.$

Relative *t*-designs in Q-polynomial A.S.

Let $u_0 \in X$ be a fixed point and (Y, w) be a weighted subset of X. Define

$$
\chi_{(Y,w)}(y) = \begin{cases} w(y) & \text{if } y \in Y, \\ 0 & \text{if } y \notin Y. \end{cases}
$$

Definition (Delsarte, 1977)

Let $\mathfrak X$ be a Q-polynomial association scheme. A weighted subset (Y, w) of X is called a relative *t*-design in $\mathfrak X$ with respect to u_0 if $E_{i\chi(\gamma,w)}$ and $E_{i\chi(u_0)}$ are linearly dependent for all $1 \leq j \leq t$.

Definition (Delsarte, 1973)

Let $\mathfrak X$ be a Q-polynomial association scheme. A weighted subset (Y, w) is called a *t*-design in \mathfrak{X} $E_i\chi_{(\gamma,w)} = 0$ for all $1 \leq j \leq t$.

Block designs and the generalization

A *t*-(v, k, λ) design (V, B), or *t*-design in $J(v, k)$ consists of sets of

- points: V with $|V| = v$,
- blocks: non-empty subset \mathcal{B} of $X = \binom{V}{k}$,

so that for every $T \in \binom{V}{t}$,

 $\#{B \in \mathcal{B} : T \subseteq B} = \lambda > 0.$

Block designs and the generalization

A *t*-(v, k, λ) design (V, B), or *t*-design in $J(v, k)$ consists of sets of

- points: V with $|V| = v$,
- blocks: non-empty subset \mathcal{B} of $X = \binom{V}{k}$,

so that for every $T \in \binom{V}{t}$,

$\#{B \in \mathcal{B} : T \subseteq B} = \lambda > 0.$

$$
\blacksquare \mathsf{w}: \mathcal{B} \to \mathbb{R}_{>0}.
$$

$$
\mathbf{X} = \begin{pmatrix} V \\ k_1 \end{pmatrix} \cup \begin{pmatrix} V \\ k_2 \end{pmatrix} \cdots \cup \begin{pmatrix} V \\ k_p \end{pmatrix}.
$$

(V, B, w) is called a weighted regular twice balance

(*V*, *B*,*w*) is called a weighted regular *t*-wise balanced design if

$$
\sum_{B\in\mathcal{B},\,T\subseteq B}w(B)=\lambda>0.
$$

 \iff A relative *t*-design in $H(v, 2)$ with with respect to $(0, 0, \dots, 0)$.

Our problem

Our problem

Question: Is *Y ∩ X^rⁱ* 'some' design in *X^rⁱ* ?

- Structure of one shell X_r of $J(v, k)$.
- How to define designs in X_r ?

Product association scheme

Let (*Y*ℓ, *A*ℓ) be an association scheme of class *k*^ℓ with Bose-Mesner Algebra *A*ℓ. The direct product of *m* number of association schemes is

 $(X, \mathcal{A}) = (Y_1, \mathcal{A}_1) \otimes (Y_2, \mathcal{A}_2) \otimes \cdots \otimes (Y_m, \mathcal{A}_m),$

where

$$
X = Y_1 \times Y_2 \times \cdots \times Y_m
$$

$$
\mathcal{A} = \{ \otimes_{\ell=1}^m B_\ell \mid B_\ell \in \mathcal{A}_\ell, 1 \leq \ell \leq m \}.
$$

Structure of one shell of *J*(*v*, *k*)

Recall that
$$
u_0 = \{1, 2, ..., k\}
$$
 and $X_r = \left\{x \in {V \choose k} : |x \cap u_0| = k - r\right\}.$

1 If 2 ≤ *r* ≤ $\frac{k}{2}$, take $X_r := \{(u_0 - x, x - u_0) | x \in X_r\}$, i.e.,

$$
X_r = J(k,r) \otimes J(v-k,r).
$$

Structure of one shell of *J*(*v*, *k*)

Recall that
$$
u_0 = \{1, 2, ..., k\}
$$
 and $X_r = \left\{x \in {V \choose k} : |x \cap u_0| = k - r\right\}.$

1 If 2 ≤ *r* ≤ $\frac{k}{2}$, take $X_r := \{(u_0 - x, x - u_0) | x \in X_r\}$, i.e.,

$$
X_r = J(k,r) \otimes J(v-k,r).
$$

2 If $\frac{k}{2} < r \le \frac{\nu-k}{2}$, take $X_r := \{(x \cap u_0, x - u_0) \mid x \in X_r\}$, i.e.,

$$
X_r = J(k, k-r) \otimes J(v-k, r).
$$

3 If $\frac{v-k}{2} < r \leq k-2$, take $X_r := \{(x \cap u_0, (V - u_0) - x \mid x \in X_r\}$, i.e.,

$$
X_r = J(k, k-r) \otimes J(v-k, v-k-r).
$$

Structure of one shell of *J*(*v*, *k*)

Recall that
$$
u_0 = \{1, 2, ..., k\}
$$
 and $X_r = \{x \in {V \choose k} : |x \cap u_0| = k - r\}.$

1 If 2 ≤ *r* ≤ $\frac{k}{2}$, take $X_r := \{(u_0 - x, x - u_0) | x \in X_r\}$, i.e.,

$$
X_r = J(k,r) \otimes J(v-k,r).
$$

2 If $\frac{k}{2} < r \le \frac{\nu-k}{2}$, take $X_r := \{(x \cap u_0, x - u_0) \mid x \in X_r\}$, i.e.,

$$
X_r = J(k, k-r) \otimes J(v-k, r).
$$

3 If $\frac{v-k}{2} < r \leq k-2$, take $X_r := \{(x \cap u_0, (V - u_0) - x \mid x \in X_r\}$, i.e.,

$$
X_r = J(k, k-r) \otimes J(v-k, v-k-r).
$$

Remark: The product association scheme $J(v_1, k_1) \otimes J(v_2, k_2)$ is a commutative, but not Q-polynomial association scheme.

Designs in product association schemes

Designs in in general product association schemes are defined using the primitive idempotent for each component.

Definition (Martin, 1998)

Let $|V_i| = v_i$ for $i = 1, 2$ and $X = \binom{V_1}{k_1} \times \binom{V_2}{k_2}$. A weighted subset (Y, w) of X is called a weighted *t*-design in $J(v_1, k_1) \otimes J(v_2, k_2)$ if for $j_1 + j_2 = t$

> \sum $w(y_1, y_2) = \lambda_{(j_1, j_2)}$ (*y*1,*y*2)*∈Y z*₁ ⊆*y*₁, *z*₂ ⊆*y*₂

is independent on the choice of $(z_1, z_2) \in {\binom{V_1}{j_1}} \times {\binom{V_2}{j_2}}.$

In particular, it is called a mixed *t*-design if $w = 1$.

Main result

- (*Y*, *w*) is supported by *p* shells if $\{r_1, \ldots, r_p\} = \{r \mid Y \cap X_r \neq \emptyset\}$.
- Recall that the *r*-th shell of $J(v, k)$ is $X_r = J(k, k_1) \otimes J(v k, k_2)$

Theorem (Bannai-Z., 2018)

If (Y, w) *is a relative t-design in J* (v, k) *on p shells* $X_{r_1} \cup \cdots \cup X_{r_p}$, then (*Y ∩ X^rⁱ* ,*w*) *is a weighted* (*t* + 1 − *p*)*-design in X^rⁱ as a product association scheme for* $1 \leq i \leq p$.

Lower bound for relative *t*-designs on one shell

Theorem (Bannai-Bannai-Suda-Tanaka, 2015; Martin, 1998)

Let Y be a t-design in one shell X^r of J(*v*, *k*)*. Then*

$$
|\mathsf{Y}| \ge \left\{ \begin{array}{ll} {V \choose e} - {V \choose e-1} & \text{if} \quad t = 2e, \\[10pt] 2 \left({V-1 \choose e} - {V-1 \choose e-1}\right) & \text{if} \quad t = 2e+1. \end{array} \right.
$$

The design (*Y*,*w*) is called tight if the above lower bound is attained.

Tight 2-designs in *X^r*

All known tight mixed 2-designs in *X^r* come from symmetric 2-designs with one block removed. More precisely, (V, B) is a symmetric 2- (v, k, λ) design. Let V_1 be the points set of a block $B \in \mathcal{B}$ and $V_2 = V\setminus V_1$, then $(V_1 \times V_2, \mathcal{B} \backslash B)$ forms a mixed 2-design with $\lambda_{(2,0)} + 1 = \lambda_{(1,1)} = \lambda_{(0,2)} = \lambda$.

2-(7,3,1) design gives a 2-design in *J*(3, 1) *⊗ J*(4, 2).

Tight 3-designs in *X^r*

Possible parameters of tight 3-designs in X_r for $v \le 1,000$ are of type:

$$
v = 4u
$$
, $k = 2u$, $k_1 = k_2 = r$, $|\mathcal{Y}| = 4(2u - 1)$, for $2 \le r \le u$.

Construction:

¹ *H*: symmetric Hadamard 2-(4*u* − 1, 2*u* − 1, *u* − 1) design

 H_{Ind} | H_{Res} | H_{Res} : 2-(2*u*, *u*, *u* − 1) design. *HInd*: 2-(2*u* − 1, *u* − 1, *u* − 2) design

² Tight 3-designs in *J*(2*u*, *u*) *⊗ J*(2*u*, *u*)

Further work

■ If (Y, w) is a relative *t*-design in a Q-polynomial association scheme on *p* shells X_{r_1} ∪ \dots ∪ X_{r_n} with respect to a fixed point, then for each *i* x_{r_i} *Y*∩ X_{r_i} is some design in X_{r_i} ?

Further work

- If (Y, w) is a relative *t*-design in a Q-polynomial association scheme on *p* shells X_{r_1} ∪ \dots ∪ X_{r_n} with respect to a fixed point, then for each *i* x_{r_i} *Y*∩ X_{r_i} is some design in X_{r_i} ?
- \blacksquare The same question for P-polynomial association scheme.

Further work

- If (Y, w) is a relative *t*-design in a Q-polynomial association scheme on *p* shells X_{r_1} ∪ \dots ∪ X_{r_p} with respect to a fixed point, then for each *i* x_{r_i} *Y*∩ X_{r_i} is some design in X_{r_i} ?
- \blacksquare The same question for P-polynomial association scheme.

Both of the problems are solved for $H(v, 2)$ and $J(v, k)$.

Thank you for your attention.