Construction of pairs of orthogonal latin cubes based on combinatorial designs

Vladimir N. Potapov

Sobolev Institute of Mathematics, Novosibirsk, Russia

G2R2, Novosibirsk; August 15, 2018

Definition

A latin square of order *n* is an $n \times n$ array of *n* symbols in which each symbol occurs exactly once in each row and in each column.

0	2	3	1	
3	1	0	2	
1	3	2	0	
2	0	1	3	

Definition

Two latin squares are orthogonal if, when they are superimposed, every ordered pair of symbols appears exactly once. If in a set of latin squares, any two latin squares are orthogonal then the set is called Mutually Orthogonal Latin Squares (MOLS).

0	2	3	1	0	2	3	1	0	2	3	1
3	1	0	2	2	0	1	3	1	3	2	0
1	3	2	0	3	1	0	2	2	0	1	3
2	0	1	3	1	3	2	0	3	1	0	2

Definition

A d-dimensional array with the same condition is called a latin d-cube. Two latin d-cubes are orthogonal if the same 2-dimensional faces in cubes contain orthogonal latin squares.

A Steiner system with parameters t, k, n, written S(t, k, n), is a set of k-element unordered subsets of $[n] = \{0, ..., n-1\}$ (called blocks) with the property that each t-element subset of [n] is contained in exactly one block. In an alternate notation for block designs, an S(t, k, n) would be a t - (n, k, 1) design.

An MDS code with parameters t, k, n, written M(t, k, n), is a set of k-tuples from $[n]^k$ with the property that each t-tuple occupies any t positions exactly ones.

An *n*-ary MDS code *M* is a subset of $[n]^k$ with cardinality n^t such that the Hamming distance between two codewords is not less than k - t + 1.

A pair of OLC of order *n* is equivalent to M(3,5,n). If a pair of orthogonal latin cubes are defined by functions $f_i : [n]^3 \rightarrow [n]$, i = 1, 2 then the set $M = \{(x_1, x_2, x_3, f_1(x_1, x_2, x_3), f_2(x_1, x_2, x_3)) \mid (x_1, x_2, x_3) \in [n]^3\}$ is an MDS code.

 $M = \{(00000), (10011), \dots, (33330)\}.$

Theorem (1959, Parker, Bose, and Shrikhande)

For $n \neq 2, 3, 6$ there exists a pair of orthogonal latin squares of order n.

Problem

For which n does there exist a pair of orthogonal latin cubes of order n?

Theorem (P.Keevash,14)

The natural divisibility conditions are sufficient for existence of Steiner system S(t, k, n) apart from a finite number of exceptional n given fixed t and k.

Theorem (P.Keevash,18)

There exist MDS codes M(t, k, n) apart from a finite number of exceptional n given fixed t and k.

Constructions

1. Solutions of systems of linear equations over finite fields (for n prime power).

2. Cartesian product construction (McNeish's theorem, for $n \neq 2q$, $n \neq 3q$).

3. Generalization of Wilson's construction (for $n = 16(6m \pm 1) + 4$).

Proposition

If designs D_2 of type S(2, 5, n) and D_3 of type S(3, 5, n) exist and $D_2 \subset D_3$, then there exits a pair of orthogonal latin cubes of order n.

The natural divisibility condition for existence of Steiner systems S(2,5,n) and S(3,5,n) simultaneously is that n = 5 or 41 mod 60.

Sketch of proof

$$\begin{aligned} X &= \{x_1, x_2, x_3, x_4, x_5\} \in D_3 \setminus D_2 \Rightarrow \\ M_X &= \{(x_{\tau 1}, x_{\tau 2}, x_{\tau 3}, x_{\tau 4}, x_{\tau 5}) \mid \tau \in A_5\}. \end{aligned}$$

 $X = \{x_1, x_2, x_3, x_4, x_5\} \in D_2 \Rightarrow$ define an MDS code M_X over alphabet X of type M(3, 5, 5) such that M_X contains $(x_i, x_i, x_i, x_i, x_i)$ for i = 1, ..., 5.

Then $M = \bigcup_{X \in D_3} M_X$ is an MDS code of type M(3, 5, n).