CI-property for decomposable Schur rings over an abelian group Based on joint work with István Kovács

Grigory Ryabov

Novosibirsk State University

G2R2-2018, Novosibirsk, August 06-19, 2018

S-rings

G is a finite group, e is the identity of G

A partition S of G is called a Schur partition if S satisfies the following properties:

- $\circ \{e\} \in \mathcal{S}$,
- $X \in \mathcal{S} \Rightarrow X^{-1} \in \mathcal{S}$,
- for every $X,Y,Z\in\mathcal{S}$ the number $c^Z_{X,Y}=|Y\cap X^{-1}z|$ does not depend on $z \in Z$.

A subring $A \subseteq \mathbb{Z}G$ is called an S-ring (Schur ring) over G if there exists a Schur partition $S = S(A)$ such that $\mathcal{A} = \mathcal{S}$ pan $_\mathbb{Z}\{\underline{X}:~X\in\mathcal{S}\}$, where $\underline{X} = \sum_{\mathsf{x}\in\mathcal{X}}\mathsf{x}.$

- \bullet The elements of S are called the basic sets of A
- $rk(\mathcal{A}) = |\mathcal{S}|$ is called the rank of \mathcal{A}

Schurian S-rings

- \circ G is a finite group, e is the identity of G
- $G_{\text{right}} = \{x \mapsto xg, x \in G : g \in G\} \le \text{Sym}(G)$
- \bullet Orb(K, G) is the set of all orbits of $K < Sym(G)$ on G

Theorem (Schur, 1933)

Let $K \le Sym(G)$ and $K \ge G_{right}$. Then $Orb(K_e, G)$ is a Schur partition.

Schurian S-rings

- \circ G is a finite group, e is the identity of G
- $G_{\text{right}} = \{x \mapsto xg, x \in G : g \in G\} \le \text{Sym}(G)$
- \bullet Orb(K, G) is the set of all orbits of $K \leq Sym(G)$ on G

Theorem (Schur, 1933) Let $K \le Sym(G)$ and $K \ge G_{right}$. Then Orb (K_e, G) is a Schur partition.

- An S-ring A over G is called schurian if $\mathcal{S}(\mathcal{A}) = \mathrm{Orb}(K_e, G)$ for some $K \le Sym(G)$ such that $K \ge G_{right}$.
- \circ There exist non-schurian S-rings. The first example of a non-schurian S-ring was found by Wielandt in 1964.
- \circ A finite group G is called a Schur group if every S-ring over G is schurian (Pöschel, 1974).

Isomorphisms and automorphisms of S-rings

 ${\mathcal A}$ and ${\mathcal A}^{'}$ are S-rings over groups G and $G^{'}$ respectively.

- A (combinatorial) isomorphism from ${\cal A}$ to ${\cal A}^{'}$ is defined to be a bijection $f:G\to G^{'}$ such that ${Cay(G,X): X \in S(\mathcal{A})}^f = {Cay(G',X'): X' \in S(\mathcal{A}')}^f.$
- \circ lso(A) is the set of all $f \in Sym(G)$ such that f is an isomorphism from A to an S-ring over G .

$$
\circ \operatorname{Aut}(\mathcal{A}) = \bigcap_{X \in S(\mathcal{A})} \operatorname{Aut}(\operatorname{Cay}(G,X)).
$$

CI-S-rings

Definition (Hirasaka-Muzychuk, 2001) An S-ring A over G is called a CI-S-ring if $\textsf{Iso}(\mathcal{A}) = \textsf{Aut}(\mathcal{A}) \textsf{Aut}(G).$

Proposition (Hirasaka-Muzychuk, 2001)

Let A be a schurian S-ring over G. Then the following conditions are equivalent:

- \circ A is a CI-S-ring;
- \bullet Every two regular subgroups of Aut(\mathcal{A}), which are isomorphic to G, are conjugate in Aut (A) .

CI-S-rings

Definition (Hirasaka-Muzychuk, 2001) An S-ring A over G is called a CI-S-ring if $\textsf{Iso}(\mathcal{A}) = \textsf{Aut}(\mathcal{A}) \textsf{Aut}(G).$

Proposition (Hirasaka-Muzychuk, 2001)

Let $\mathcal A$ be a schurian S-ring over G. Then the following conditions are equivalent:

- \circ A is a CI-S-ring;
- \bullet Every two regular subgroups of Aut(\mathcal{A}), which are isomorphic to G, are conjugate in Aut (A) .
- If rk $(A) = 2$ then Aut $(A) = Sym(G)$ and hence A is a CI-S-ring.
- If $A = \mathbb{Z}G$ then $Aut(A) = G_{right}$ and hence A is a CI-S-ring.

CI-graphs and (D)CI-groups

- If $\sigma \in$ Aut(G) then Cay(G, S) \cong Cay(G, S^{σ}).
- \circ A Cayley graph Cay(G, S) is defined to be a CI-graph if $\mathsf{Cay}(\mathsf{G},\mathsf{S})\cong\mathsf{Cay}(\mathsf{G},\mathsf{T})$ implies that $\mathsf{T}=\mathsf{S}^{\sigma}$ for some $\sigma \in$ Aut(G).
- A finite group G is defined to be a DCI-group (CI-group) if every (undirected) Cayley graph over G is a CI-graph.

CI-graphs and (D)CI-groups

- If $\sigma \in$ Aut(G) then Cay(G, S) \cong Cay(G, S^{σ}).
- \circ A Cayley graph Cay(G, S) is defined to be a CI-graph if $\mathsf{Cay}(\mathsf{G},\mathsf{S})\cong\mathsf{Cay}(\mathsf{G},\mathsf{T})$ implies that $\mathsf{T}=\mathsf{S}^{\sigma}$ for some $\sigma \in$ Aut(G).
- A finite group G is defined to be a DCI-group (CI-group) if every (undirected) Cayley graph over G is a CI-graph.

Problem (Babai)

Determine all DCI- and CI-groups.

- C.H. Li, On isomorphisms of finite Cayley graphs survey, DM 256 (2002).
- C.H. Li, Z.P. Lu, P. Pálfy, Further restrictions on the struture of finite CI-groups, JACO 26 (2007).

Abelian DCI-groups

 C_n is the cyclic group of order *n*.

 $\mathcal E$ is the class of abelian groups whose every Sylow subgroup is elementary abelian.

 \bullet If G is ableian DCI-group then $G \in \mathcal{E}$ or Sylow 2-subgroup P of G is isomorphic to C_4 and $G/P \in \mathcal{E}$ (follows from the Li-Praeger-Xu's result).

Abelian DCI-groups

 C_n is the cyclic group of order *n*.

 $\mathcal E$ is the class of abelian groups whose every Sylow subgroup is elementary abelian.

- \bullet If G is ableian DCI-group then $G \in \mathcal{E}$ or Sylow 2-subgroup P of G is isomorphic to C_4 and $G/P \in \mathcal{E}$ (follows from the Li-Praeger-Xu's result).
- The following groups are DCI-groups:
	- \circ C_n , C_{2n} , C_{4n} , where *n* is a square-free odd (Muzychuk);
	- C_{p}^{e} , where p is a prime and $e \leq 5$ (Elspas-Turner; Godsil; Alspah-Nowitz; Dobson; Hirasaka-Muzychuk, Morris, Feng-Kovács);
	- $C_p^2 \times C_q$, where p and q are distinct primes (Kovács-Muzychuk);
	- $C^3_\rho\times C_q$, where ρ and q are distinct primes and $q>\rho^3$ (Somlai).

Abelian non-DCI-groups

- The following groups are non-DCI-groups:
	- C_2^e , where $e \geq 6$ (Nowitz);
	- C_3^e , where $e \geq 8$ (Spiga);
	- C_p^e , where $e \geq 2p + 3$ (Somlai).

Abelian non-DCI-groups

The following groups are non-DCI-groups:

 C_2^e , where $e \geq 6$ (Nowitz); C_3^e , where $e \geq 8$ (Spiga); C_p^e , where $e \geq 2p + 3$ (Somlai).

Question

Is there a function $f(p)$ such that C_p^e is a DCI-group for $e < f(p)$ and a non-DCI-group for $e > f(p)$?

DCI-groups and S-rings

Proposition (Hirasaka-Muzychuk, 2001)

A finite group G is a DCI-group if and only if every schurian S-ring over G is a CI-S-ring.

DCI-groups and S-rings

Proposition (Hirasaka-Muzychuk, 2001)

A finite group G is a DCI-group if and only if every schurian S-ring over G is a CI-S-ring.

- \bullet To prove that given group G is a DCI-group it is sufficient to check that every schurian S-ring over G is a CI-S-ring.
- This approach was used to prove that the following groups are DCI-groups (here p and q are distinct primes):
	- C_p^4 (Hirasaka-Muzychuk, 2001);
	- $C_p^2 \times C_q$ (Kovács-Muzychuk, 2009);
	- C_p^5 (Feng-Kovács, 2017).
- One of the main difficulties in this approach is to check that every decomposable schurian S-ring over given group is a CI-S-ring.

Decomposable S-rings

G is a finite group and $\mathcal A$ is an S-ring over G

- A subgroup $H \leq G$ is an A-subgroup if $H \in \mathcal{A}$.
- \bullet Let $L \triangleleft U \le G$. A section U/L is an A-section if U and L are A-subgroups.
- If U/L is an A-section then the module $\mathcal{A}_{U/L} = \mathsf{Span}_\mathbb{Z}\left\{ \underline{X}^\pi: \ X \in \mathcal{S}(\mathcal{A}), \ X \subseteq U \right\}$, where $\pi: U \to U/L$ is the canonical epimorphism, is an S-ring over U/L .

Definition (Evdokimov-Ponomarenko, 2001)

Let U/L be an A-section. The S-ring A is called the U/L -wreath product or the generalized wreath product of A_U and $A_{G/L}$ if $L \triangleleft G$ and every basic set of A outside U is a union of L-cosets.

- \bullet The U/L -wreath product is called nontrivial if $e \neq L$ and $U \neq G$.
- \bullet The S-ring A is said to be decomposable if A is the nontrivial U/L -wreath product for some A-section U/L .

CI-porperty for decomposable S-rings

• In general case the generalize wreath product of two CI-S-rings can be non-CI-S-ring.

Example

Let $G = C_8$ and $L \le U \le G$ with $|L| = 2$ and $|U| = 4$. Then $\mathbb{Z}U$ and $\mathbb{Z}(G/L)$ are CI-S-rings, however the U/L -wreath product of $\mathbb{Z}U$ and $\mathbb{Z}(G/L)$ is not CI-S-ring.

CI-porperty for decomposable S-rings

• In general case the generalize wreath product of two CI-S-rings can be non-CI-S-ring.

Example

Let $G = C_8$ and $L \le U \le G$ with $|L| = 2$ and $|U| = 4$. Then $\mathbb{Z}U$ and $\mathbb{Z}(G/L)$ are CI-S-rings, however the U/L -wreath product of $\mathbb{Z}U$ and $\mathbb{Z}(G/L)$ is not CI-S-ring.

Question

- When the generalized wreath product of two CI-S-rings is a CI-S-ring?
- When the generalized wreath product of two CI-S-rings over a group from $\mathcal E$ is a CI-S-ring?

Main result

- If A is an S-ring over G then put $Aut_G(\mathcal{A}) = Aut(\mathcal{A}) \cap Aut(G).$
- \circ For a set $\Delta \subseteq Sym(G)$ and a section S of G we set $\Delta^{S} = \{f^{S}: f \in \Delta, S^{f} = S\}.$

Theorem (Kovács-R., 2018)

Let $G \in \mathcal{E}$, A an S-ring over G, and U/L an A-section. Suppose that A is the nontrivial U/L -wreath product and the S-rings A_{U} and $A_{G/I}$ are CI-S-rings. Then A is a CI-S-ring whenever

$$
\mathsf{Aut}_{U/L}(\mathcal{A}_{U/L}) = \mathsf{Aut}_{U}(\mathcal{A}_{U})^{U/L} \mathsf{Aut}_{G/L}(\mathcal{A}_{G/L})^{U/L}
$$

In particular, ${\cal A}$ is a Cl-S-ring if ${\sf Aut}_{U/L}({\cal A}_{U/L}) = {\sf Aut}_{U}({\cal A}_{U})^{U/L}$ or $\mathsf{Aut}_{U/L}(\mathcal{A}_{U/L})=\mathsf{Aut}_{G/L}(\mathcal{A}_{G/L})^{U/L}.$

.

Corollary of Theorem

 $\mathcal A$ is an S-ring over a group G

- \bullet A is called cyclotomic if $\mathcal{S}(\mathcal{A}) = \mathrm{Orb}(K, G)$ for some $K <$ Aut(G).
- $K_1, K_2 <$ Sym(G) are 2-equivalent if $Orb(K_1, G^2) = Orb(K_2, G^2)$. In this case we write $K_1 \approx_2 K_2$.
- \circ A is 2-minimal if $\{K \le Sym(G): K \ge G_{right} \text{ and } K \approx_2 \text{Aut}(\mathcal{A})\} = \{\text{Aut}(\mathcal{A})\}.$
- $K_1, K_2 \leq$ Aut(G) are Cayley equivalent if $Orb(K_1, G) = Orb(K_2, G)$. In this case we write $K_1 \approx_{Cav} K_2$.
- \bullet A is Cayley minimal if A is cyclotomic and $\{K \leq \text{Aut}(G): K \approx_{Cav} \text{Aut}_G(\mathcal{A})\} = \{\text{Aut}_G(\mathcal{A})\}.$
- \circ $\mathbb{Z}G$ is 2- and Cayley minimal.

Corollary of Theorem

 $\mathcal A$ is an S-ring over a group G

- \bullet A is called cyclotomic if $\mathcal{S}(\mathcal{A}) = \mathrm{Orb}(K, G)$ for some $K <$ Aut(G).
- $K_1, K_2 <$ Sym(G) are 2-equivalent if $Orb(K_1, G^2) = Orb(K_2, G^2)$. In this case we write $K_1 \approx_2 K_2$.
- \circ A is 2-minimal if $\{K \le Sym(G): K \ge G_{right} \text{ and } K \approx_2 \text{Aut}(\mathcal{A})\} = \{\text{Aut}(\mathcal{A})\}.$
- $K_1, K_2 \leq$ Aut(G) are Cayley equivalent if $Orb(K_1, G) = Orb(K_2, G)$. In this case we write $K_1 \approx_{Cav} K_2$.
- \bullet A is Cayley minimal if A is cyclotomic and $\{K < \text{Aut}(G): K \approx_{Cav} \text{Aut}_G(A)\} = \{\text{Aut}_G(A)\}.$
- \circ $\mathbb{Z}G$ is 2- and Cayley minimal.

Corollary

Under assumption of Theorem suppose that $\mathcal A$ is cyclotomic and A_{UU} is 2-minimal or Cayley minimal. Then A is a CI-S-ring.

Application of Theorem to decomposable S-rings over an elementary abelian group

- $G = \mathcal{C}_{p}^{e}$, where p is a prime and $e \geq 1$
	- An S-ring ${\mathcal A}$ over G is called a p -S-ring if $|X|=p^k$ for every $X \in \mathcal{S}(\mathcal{A}).$
	- To prove that G is a DCI-group it is sufficient to prove that every cyclotomic p-S-ring over G is a CI-S-ring (follows from Kovács-Feng's result).

Application of Theorem to decomposable S-rings over an elementary abelian group

- The proof that every decomposable p-S-ring over C_p^e , where $e \leq 4$, is a CI-S-ring not using Theorem takes approximately 5 pages.
- The proof that every decomposable p-S-ring over C_p^e , where $e < 4$, is a CI-S-ring using Theorem takes few lines.
- \bullet The proof that every decomposable cyclotomic p-S-ring over C_p^5 is a CI-S-ring not using Theorem takes approximately 9 pages.
- The proof that every decomposable p-S-ring over C_p^e , where $e < 4$, is a CI-S-ring using Theorem takes 1 page.
- Using Theorem it is possible to prove that in most cases decomposable cyclotomic p -S-ring over C_p^6 is a CI-S-ring.

Application of Theorem to decomposable S-rings over an elementary abelian group

- The proof that every decomposable p-S-ring over C_p^e , where $e \leq 4$, is a CI-S-ring not using Theorem takes approximately 5 pages.
- The proof that every decomposable p-S-ring over C_p^e , where $e < 4$, is a CI-S-ring using Theorem takes few lines.
- \bullet The proof that every decomposable cyclotomic p-S-ring over C_p^5 is a CI-S-ring not using Theorem takes approximately 9 pages.
- The proof that every decomposable p-S-ring over C_p^e , where $e < 4$, is a CI-S-ring using Theorem takes 1 page.
- Using Theorem it is possible to prove that in most cases decomposable cyclotomic p -S-ring over C_p^6 is a CI-S-ring.

Question

Let p be an odd prime. Is C_p^6 a DCI-group?