CI-property for decomposable Schur rings over an abelian group Based on joint work with István Kovács

Grigory Ryabov

Novosibirsk State University

G2R2-2018, Novosibirsk, August 06-19, 2018

S-rings

G is a finite group, e is the identity of G

A partition S of G is called a Schur partition if S satisfies the following properties:

- $\{e\} \in \mathcal{S}$,
- $X \in \mathcal{S} \Rightarrow X^{-1} \in \mathcal{S}$,
- for every $X, Y, Z \in S$ the number $c_{X,Y}^Z = |Y \cap X^{-1}z|$ does not depend on $z \in Z$.

A subring $\mathcal{A} \subseteq \mathbb{Z}G$ is called an *S*-ring (Schur ring) over *G* if there exists a Schur partition $\mathcal{S} = \mathcal{S}(\mathcal{A})$ such that $\mathcal{A} = Span_{\mathbb{Z}}\{\underline{X} : X \in \mathcal{S}\}$, where $\underline{X} = \sum_{x \in X} x$.

- $\bullet\,$ The elements of ${\cal S}$ are called the basic sets of ${\cal A}$
- $\mathsf{rk}(\mathcal{A}) = |\mathcal{S}|$ is called the rank of \mathcal{A}

Schurian S-rings

- G is a finite group, e is the identity of G
- $G_{right} = \{x \mapsto xg, x \in G : g \in G\} \leq Sym(G)$
- Orb(K, G) is the set of all orbits of $K \leq Sym(G)$ on G

Theorem (Schur, 1933)

Let $K \leq \text{Sym}(G)$ and $K \geq G_{right}$. Then $\text{Orb}(K_e, G)$ is a Schur partition.

Schurian S-rings

- G is a finite group, e is the identity of G
- $G_{right} = \{x \mapsto xg, x \in G : g \in G\} \leq Sym(G)$
- Orb(K, G) is the set of all orbits of $K \leq Sym(G)$ on G

Theorem (Schur, 1933) Let $K \leq \text{Sym}(G)$ and $K \geq G_{right}$. Then $\text{Orb}(K_e, G)$ is a Schur partition.

- An S-ring A over G is called schurian if S(A) = Orb(K_e, G) for some K ≤ Sym(G) such that K ≥ G_{right}.
- There exist non-schurian *S*-rings. The first example of a non-schurian *S*-ring was found by Wielandt in 1964.
- A finite group *G* is called a Schur group if every *S*-ring over *G* is schurian (Pöschel, 1974).

Isomorphisms and automorphisms of S-rings

 ${\cal A}$ and ${\cal A}^{'}$ are S-rings over groups G and G ' respectively.

- A (combinatorial) isomorphism from \mathcal{A} to \mathcal{A}' is defined to be a bijection $f : G \to G'$ such that $\{Cay(G, X) : X \in S(\mathcal{A})\}^f = \{Cay(G', X') : X' \in S(\mathcal{A}')\}.$
- Iso(A) is the set of all $f \in Sym(G)$ such that f is an isomorphism from A to an S-ring over G.

•
$$\operatorname{Aut}(\mathcal{A}) = \bigcap_{X \in \mathcal{S}(\mathcal{A})} \operatorname{Aut}(\operatorname{Cay}(G, X)).$$

Cl-S-rings

Definition (Hirasaka-Muzychuk, 2001) An S-ring A over G is called a Cl-S-ring if Iso(A) = Aut(A) Aut(G).

Proposition (Hirasaka-Muzychuk, 2001)

Let \mathcal{A} be a schurian S-ring over G. Then the following conditions are equivalent:

- \mathcal{A} is a CI-S-ring;
- Every two regular subgroups of Aut(A), which are isomorphic to G, are conjugate in Aut(A).

CI-S-rings

Definition (Hirasaka-Muzychuk, 2001) An S-ring A over G is called a Cl-S-ring if Iso(A) = Aut(A) Aut(G).

Proposition (Hirasaka-Muzychuk, 2001)

Let \mathcal{A} be a schurian S-ring over G. Then the following conditions are equivalent:

- \mathcal{A} is a CI-S-ring;
- Every two regular subgroups of Aut(A), which are isomorphic to G, are conjugate in Aut(A).
- If rk(A) = 2 then Aut(A) = Sym(G) and hence A is a CI-S-ring.
- If $\mathcal{A} = \mathbb{Z}G$ then $Aut(\mathcal{A}) = G_{right}$ and hence \mathcal{A} is a CI-S-ring.

CI-graphs and (D)CI-groups

- If $\sigma \in Aut(G)$ then $Cay(G, S) \cong Cay(G, S^{\sigma})$.
- A Cayley graph Cay(G, S) is defined to be a Cl-graph if Cay(G, S) ≅ Cay(G, T) implies that T = S^σ for some σ ∈ Aut(G).
- A finite group G is defined to be a DCI-group (CI-group) if every (undirected) Cayley graph over G is a CI-graph.

CI-graphs and (D)CI-groups

- If $\sigma \in Aut(G)$ then $Cay(G, S) \cong Cay(G, S^{\sigma})$.
- A Cayley graph Cay(G, S) is defined to be a Cl-graph if $Cay(G, S) \cong Cay(G, T)$ implies that $T = S^{\sigma}$ for some $\sigma \in Aut(G)$.
- A finite group G is defined to be a DCI-group (CI-group) if every (undirected) Cayley graph over G is a CI-graph.

Problem (Babai)

Determine all DCI- and CI-groups.

- C.H. Li, On isomorphisms of finite Cayley graphs survey, DM 256 (2002).
- C.H. Li, Z.P. Lu, P. Pálfy, Further restrictions on the struture of finite CI-groups, JACO 26 (2007).

Abelian DCI-groups

 C_n is the cyclic group of order n.

 $\ensuremath{\mathcal{E}}$ is the class of abelian groups whose every Sylow subgroup is elementary abelian.

• If G is ableian DCI-group then $G \in \mathcal{E}$ or Sylow 2-subgroup P of G is isomorphic to C_4 and $G/P \in \mathcal{E}$ (follows from the Li-Praeger-Xu's result).

Abelian DCI-groups

 C_n is the cyclic group of order n.

 $\ensuremath{\mathcal{E}}$ is the class of abelian groups whose every Sylow subgroup is elementary abelian.

- If G is ableian DCI-group then $G \in \mathcal{E}$ or Sylow 2-subgroup P of G is isomorphic to C_4 and $G/P \in \mathcal{E}$ (follows from the Li-Praeger-Xu's result).
- The following groups are DCI-groups:
 - C_n , C_{2n} , C_{4n} , where *n* is a square-free odd (Muzychuk);
 - C_p^e , where p is a prime and $e \le 5$ (Elspas-Turner; Godsil; Alspah-Nowitz; Dobson; Hirasaka-Muzychuk, Morris, Feng-Kovács);
 - $C_p^2 \times C_q$, where p and q are distinct primes (Kovács-Muzychuk);
 - $C_p^3 \times C_q$, where p and q are distinct primes and $q > p^3$ (Somlai).

Abelian non-DCI-groups

- The following groups are non-DCI-groups:
 - C_2^e , where $e \ge 6$ (Nowitz);
 - C_3^e , where $e \ge 8$ (Spiga);
 - C_p^e , where $e \ge 2p + 3$ (Somlai).

Abelian non-DCI-groups

• The following groups are non-DCI-groups:

•
$$C_2^e$$
, where $e \ge 6$ (Nowitz);
• C_3^e , where $e \ge 8$ (Spiga);
• C_p^e , where $e \ge 2p + 3$ (Somlai).

Question

Is there a function f(p) such that C_p^e is a DCI-group for e < f(p)and a non-DCI-group for $e \ge f(p)$?

DCI-groups and S-rings

Proposition (Hirasaka-Muzychuk, 2001)

A finite group G is a DCI-group if and only if every schurian S-ring over G is a CI-S-ring.

DCI-groups and S-rings

Proposition (Hirasaka-Muzychuk, 2001)

A finite group G is a DCI-group if and only if every schurian S-ring over G is a CI-S-ring.

- To prove that given group G is a DCI-group it is sufficient to check that every schurian S-ring over G is a CI-S-ring.
- This approach was used to prove that the following groups are DCI-groups (here *p* and *q* are distinct primes):
 - C_p^4 (Hirasaka-Muzychuk,2001);
 - $C_p^2 \times C_q$ (Kovács-Muzychuk, 2009);
 - C_p^5 (Feng-Kovács, 2017).
- One of the main difficulties in this approach is to check that every decomposable schurian *S*-ring over given group is a CI-*S*-ring.

Decomposable S-rings

 ${\it G}$ is a finite group and ${\it A}$ is an S-ring over ${\it G}$

- A subgroup $H \leq G$ is an \mathcal{A} -subgroup if $\underline{H} \in \mathcal{A}$.
- Let $L \leq U \leq G$. A section U/L is an A-section if U and L are A-subgroups.
- If U/L is an \mathcal{A} -section then the module $\mathcal{A}_{U/L} = Span_{\mathbb{Z}} \{ \underline{X}^{\pi} : X \in \mathcal{S}(\mathcal{A}), X \subseteq U \}$, where $\pi : U \to U/L$ is the canonical epimorphism, is an *S*-ring over U/L.

Definition (Evdokimov-Ponomarenko, 2001)

Let U/L be an A-section. The *S*-ring A is called the U/L-wreath product or the generalized wreath product of A_U and $A_{G/L}$ if $L \trianglelefteq G$ and every basic set of A outside U is a union of L-cosets.

- The U/L-wreath product is called nontrivial if $e \neq L$ and $U \neq G$.
- The S-ring A is said to be decomposable if A is the nontrivial U/L-wreath product for some A-section U/L.

CI-porperty for decomposable S-rings

• In general case the generalize wreath product of two CI-S-rings can be non-CI-S-ring.

Example

Let $G = C_8$ and $L \le U \le G$ with |L| = 2 and |U| = 4. Then $\mathbb{Z}U$ and $\mathbb{Z}(G/L)$ are CI-S-rings, however the U/L-wreath product of $\mathbb{Z}U$ and $\mathbb{Z}(G/L)$ is not CI-S-ring.

CI-porperty for decomposable *S*-rings

• In general case the generalize wreath product of two CI-S-rings can be non-CI-S-ring.

Example

Let $G = C_8$ and $L \le U \le G$ with |L| = 2 and |U| = 4. Then $\mathbb{Z}U$ and $\mathbb{Z}(G/L)$ are CI-S-rings, however the U/L-wreath product of $\mathbb{Z}U$ and $\mathbb{Z}(G/L)$ is not CI-S-ring.

Question

- When the generalized wreath product of two CI-S-rings is a CI-S-ring?
- When the generalized wreath product of two CI-*S*-rings over a group from \mathcal{E} is a CI-*S*-ring?

Main result

- If \mathcal{A} is an S-ring over G then put Aut_G(\mathcal{A}) = Aut(\mathcal{A}) \cap Aut(G).
- For a set $\Delta \subseteq \text{Sym}(G)$ and a section S of G we set $\Delta^{S} = \{f^{S} : f \in \Delta, S^{f} = S\}.$

Theorem (Kovács-R., 2018)

Let $G \in \mathcal{E}$, \mathcal{A} an S-ring over G, and U/L an \mathcal{A} -section. Suppose that \mathcal{A} is the nontrivial U/L-wreath product and the S-rings \mathcal{A}_U and $\mathcal{A}_{G/L}$ are CI-S-rings. Then \mathcal{A} is a CI-S-ring whenever

$$\operatorname{Aut}_{U/L}(\mathcal{A}_{U/L}) = \operatorname{Aut}_U(\mathcal{A}_U)^{U/L}\operatorname{Aut}_{G/L}(\mathcal{A}_{G/L})^{U/L}$$

In particular, \mathcal{A} is a CI-S-ring if $\operatorname{Aut}_{U/L}(\mathcal{A}_{U/L}) = \operatorname{Aut}_{U}(\mathcal{A}_{U})^{U/L}$ or $\operatorname{Aut}_{U/L}(\mathcal{A}_{U/L}) = \operatorname{Aut}_{G/L}(\mathcal{A}_{G/L})^{U/L}$.

Corollary of Theorem

 \mathcal{A} is an S-ring over a group G

- \mathcal{A} is called cyclotomic if $\mathcal{S}(\mathcal{A}) = \operatorname{Orb}(K, G)$ for some $K \leq \operatorname{Aut}(G)$.
- $K_1, K_2 \leq \text{Sym}(G)$ are 2-equivalent if $\text{Orb}(K_1, G^2) = \text{Orb}(K_2, G^2)$. In this case we write $K_1 \approx_2 K_2$.
- \mathcal{A} is 2-minimal if $\{K \leq \text{Sym}(\mathcal{G}) : K \geq G_{right} \text{ and } K \approx_2 \text{Aut}(\mathcal{A})\} = \{\text{Aut}(\mathcal{A})\}.$
- $K_1, K_2 \leq \operatorname{Aut}(G)$ are Cayley equivalent if $\operatorname{Orb}(K_1, G) = \operatorname{Orb}(K_2, G)$. In this case we write $K_1 \approx_{Cay} K_2$.
- \mathcal{A} is Cayley minimal if \mathcal{A} is cyclotomic and $\{K \leq \operatorname{Aut}(\mathcal{G}) : K \approx_{Cay} \operatorname{Aut}_{\mathcal{G}}(\mathcal{A})\} = \{\operatorname{Aut}_{\mathcal{G}}(\mathcal{A})\}.$
- $\mathbb{Z}G$ is 2- and Cayley minimal.

Corollary of Theorem

 \mathcal{A} is an S-ring over a group G

- \mathcal{A} is called cyclotomic if $\mathcal{S}(\mathcal{A}) = \operatorname{Orb}(K, G)$ for some $K \leq \operatorname{Aut}(G)$.
- $K_1, K_2 \leq \text{Sym}(G)$ are 2-equivalent if $\text{Orb}(K_1, G^2) = \text{Orb}(K_2, G^2)$. In this case we write $K_1 \approx_2 K_2$.
- \mathcal{A} is 2-minimal if $\{K \leq \text{Sym}(\mathcal{G}) : K \geq G_{right} \text{ and } K \approx_2 \text{Aut}(\mathcal{A})\} = \{\text{Aut}(\mathcal{A})\}.$
- $K_1, K_2 \leq \operatorname{Aut}(G)$ are Cayley equivalent if $\operatorname{Orb}(K_1, G) = \operatorname{Orb}(K_2, G)$. In this case we write $K_1 \approx_{Cay} K_2$.
- \mathcal{A} is Cayley minimal if \mathcal{A} is cyclotomic and $\{K \leq \operatorname{Aut}(G) : K \approx_{Cay} \operatorname{Aut}_{G}(\mathcal{A})\} = \{\operatorname{Aut}_{G}(\mathcal{A})\}.$
- $\mathbb{Z}G$ is 2- and Cayley minimal.

Corollary

Under assumption of Theorem suppose that \mathcal{A} is cyclotomic and $\mathcal{A}_{U/L}$ is 2-minimal or Cayley minimal. Then \mathcal{A} is a CI-S-ring.

Application of Theorem to decomposable S-rings over an elementary abelian group

- $G = C_p^e$, where p is a prime and $e \ge 1$
 - An S-ring A over G is called a p-S-ring if $|X| = p^k$ for every $X \in S(A)$.
 - To prove that G is a DCI-group it is sufficient to prove that every cyclotomic p-S-ring over G is a CI-S-ring (follows from Kovács-Feng's result).

Application of Theorem to decomposable *S*-rings over an elementary abelian group

- The proof that every decomposable *p*-*S*-ring over C^e_p, where e ≤ 4, is a Cl-S-ring not using Theorem takes approximately 5 pages.
- The proof that every decomposable *p*-*S*-ring over C_p^e , where $e \le 4$, is a Cl-*S*-ring using Theorem takes few lines.
- The proof that every decomposable cyclotomic *p*-*S*-ring over C_p^5 is a Cl-*S*-ring not using Theorem takes approximately 9 pages.
- The proof that every decomposable *p*-*S*-ring over C_p^e , where $e \le 4$, is a Cl-*S*-ring using Theorem takes 1 page.
- Using Theorem it is possible to prove that in most cases decomposable cyclotomic *p*-*S*-ring over C_p^6 is a CI-*S*-ring.

Application of Theorem to decomposable S-rings over an elementary abelian group

- The proof that every decomposable *p*-*S*-ring over C_p^e , where $e \le 4$, is a Cl-*S*-ring not using Theorem takes approximately 5 pages.
- The proof that every decomposable *p*-*S*-ring over C_p^e , where $e \le 4$, is a Cl-*S*-ring using Theorem takes few lines.
- The proof that every decomposable cyclotomic *p*-*S*-ring over C_p^5 is a Cl-*S*-ring not using Theorem takes approximately 9 pages.
- The proof that every decomposable *p*-*S*-ring over C_p^e , where $e \le 4$, is a Cl-*S*-ring using Theorem takes 1 page.
- Using Theorem it is possible to prove that in most cases decomposable cyclotomic *p*-*S*-ring over C_p^6 is a CI-*S*-ring.

Question

Let p be an odd prime. Is C_p^6 a DCI-group?