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S-rings

G is a finite group, e is the identity of G

A partition S of G is called a Schur partition if S satisfies the
following properties:

{e} ∈ S,
X ∈ S ⇒ X−1 ∈ S,
for every X ,Y ,Z ∈ S the number cZX ,Y = |Y ∩ X−1z | does
not depend on z ∈ Z .

A subring A ⊆ ZG is called an S-ring (Schur ring) over G if there
exists a Schur partition S = S(A) such that
A = SpanZ{X : X ∈ S}, where X =

∑
x∈X x .

The elements of S are called the basic sets of A
rk(A) = |S| is called the rank of A
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Schurian S-rings

G is a finite group, e is the identity of G
Gright = {x 7→ xg , x ∈ G : g ∈ G} ≤ Sym(G )

Orb(K ,G ) is the set of all orbits of K ≤ Sym(G ) on G

Theorem (Schur, 1933)
Let K ≤ Sym(G ) and K ≥ Gright . Then Orb(Ke ,G ) is a Schur
partition.

An S-ring A over G is called schurian if S(A) = Orb(Ke ,G )
for some K ≤ Sym(G ) such that K ≥ Gright .
There exist non-schurian S-rings. The first example of a
non-schurian S-ring was found by Wielandt in 1964.
A finite group G is called a Schur group if every S-ring over G
is schurian (Pöschel, 1974).
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Isomorphisms and automorphisms of S-rings

A and A′
are S-rings over groups G and G

′
respectively.

A (combinatorial) isomorphism from A to A′
is defined to be

a bijection f : G → G
′
such that

{Cay(G ,X ) : X ∈ S(A)}f = {Cay(G
′
,X

′
) : X

′ ∈ S(A′
)}.

Iso(A) is the set of all f ∈ Sym(G ) such that f is an
isomorphism from A to an S-ring over G .
Aut(A) =

⋂
X∈S(A)

Aut(Cay(G ,X )).

4 / 15



CI-S-rings

Definition (Hirasaka-Muzychuk, 2001)
An S-ring A over G is called a CI-S-ring if
Iso(A) = Aut(A) Aut(G ).

Proposition (Hirasaka-Muzychuk, 2001)
Let A be a schurian S-ring over G . Then the following conditions
are equivalent:

A is a CI-S-ring;
Every two regular subgroups of Aut(A), which are isomorphic
to G , are conjugate in Aut(A).

If rk(A) = 2 then Aut(A) = Sym(G ) and hence A is a
CI-S-ring.
If A = ZG then Aut(A) = Gright and hence A is a CI-S-ring.
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CI-graphs and (D)CI-groups

If σ ∈ Aut(G ) then Cay(G , S) ∼= Cay(G ,Sσ).
A Cayley graph Cay(G ,S) is defined to be a CI-graph if
Cay(G ,S) ∼= Cay(G ,T ) implies that T = Sσ for some
σ ∈ Aut(G ).
A finite group G is defined to be a DCI-group (CI-group) if
every (undirected) Cayley graph over G is a CI-graph.

Problem (Babai)
Determine all DCI- and CI-groups.

C.H. Li, On isomorphisms of finite Cayley graphs - survey, DM
256 (2002).
C.H. Li, Z.P. Lu, P. Pálfy, Further restrictions on the struture
of finite CI-groups, JACO 26 (2007).
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Abelian DCI-groups

Cn is the cyclic group of order n.
E is the class of abelian groups whose every Sylow subgroup is
elementary abelian.

If G is ableian DCI-group then G ∈ E or Sylow 2-subgroup P
of G is isomorphic to C4 and G/P ∈ E (follows from the
Li-Praeger-Xu’s result).

The following groups are DCI-groups:

Cn, C2n, C4n, where n is a square-free odd (Muzychuk);
C e
p , where p is a prime and e ≤ 5 (Elspas-Turner; Godsil;

Alspah-Nowitz; Dobson; Hirasaka-Muzychuk, Morris,
Feng-Kovács);
C 2
p × Cq, where p and q are distinct primes

(Kovács-Muzychuk);
C 3
p × Cq, where p and q are distinct primes and q > p3

(Somlai).
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Abelian non-DCI-groups

The following groups are non-DCI-groups:

C e
2 , where e ≥ 6 (Nowitz);

C e
3 , where e ≥ 8 (Spiga);

C e
p , where e ≥ 2p + 3 (Somlai).

Question
Is there a function f (p) such that C e

p is a DCI-group for e < f (p)
and a non-DCI-group for e ≥ f (p)?
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DCI-groups and S-rings

Proposition (Hirasaka-Muzychuk, 2001)
A finite group G is a DCI-group if and only if every schurian S-ring
over G is a CI-S-ring.

To prove that given group G is a DCI-group it is sufficient to
check that every schurian S-ring over G is a CI-S-ring.
This approach was used to prove that the following groups are
DCI-groups (here p and q are distinct primes):

C 4
p (Hirasaka-Muzychuk,2001);

C 2
p × Cq (Kovács-Muzychuk, 2009);

C 5
p (Feng-Kovács, 2017).

One of the main difficulties in this approach is to check that
every decomposable schurian S-ring over given group is a
CI-S-ring.
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Decomposable S-rings
G is a finite group and A is an S-ring over G

A subgroup H ≤ G is an A-subgroup if H ∈ A.
Let LE U ≤ G . A section U/L is an A-section if U and L are
A-subgroups.
If U/L is an A-section then the module
AU/L = SpanZ {X π : X ∈ S(A), X ⊆ U}, where
π : U → U/L is the canonical epimorphism, is an S-ring over
U/L.

Definition (Evdokimov-Ponomarenko, 2001)
Let U/L be an A-section. The S-ring A is called the U/L-wreath
product or the generalized wreath product of AU and AG/L if
L E G and every basic set of A outside U is a union of L-cosets.

The U/L-wreath product is called nontrivial if e 6= L and
U 6= G .
The S-ring A is said to be decomposable if A is the nontrivial
U/L-wreath product for some A-section U/L. 10 / 15



CI-porperty for decomposable S-rings

In general case the generalize wreath product of two CI-S-rings
can be non-CI-S-ring.

Example
Let G = C8 and L ≤ U ≤ G with |L| = 2 and |U| = 4. Then ZU
and Z(G/L) are CI-S-rings, however the U/L-wreath product of
ZU and Z(G/L) is not CI-S-ring.

Question
When the generalized wreath product of two CI-S-rings is a
CI-S-ring?
When the generalized wreath product of two CI-S-rings over a
group from E is a CI-S-ring?
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Main result

If A is an S-ring over G then put
AutG (A) = Aut(A) ∩ Aut(G ).
For a set ∆ ⊆ Sym(G ) and a section S of G we set
∆S = {f S : f ∈ ∆, S f = S}.

Theorem (Kovács-R., 2018)
Let G ∈ E , A an S-ring over G , and U/L an A-section. Suppose
that A is the nontrivial U/L-wreath product and the S-rings AU

and AG/L are CI-S-rings. Then A is a CI-S-ring whenever

AutU/L(AU/L) = AutU(AU)U/L AutG/L(AG/L)U/L.

In particular, A is a CI-S-ring if AutU/L(AU/L) = AutU(AU)U/L or
AutU/L(AU/L) = AutG/L(AG/L)U/L.
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Corollary of Theorem
A is an S-ring over a group G

A is called cyclotomic if S(A) = Orb(K ,G ) for some
K ≤ Aut(G ).
K1,K2 ≤ Sym(G ) are 2-equivalent if
Orb(K1,G

2) = Orb(K2,G
2). In this case we write K1 ≈2 K2.

A is 2-minimal if
{K ≤ Sym(G ) : K ≥ Gright and K ≈2 Aut(A)} = {Aut(A)}.
K1,K2 ≤ Aut(G ) are Cayley equivalent if
Orb(K1,G ) = Orb(K2,G ). In this case we write K1 ≈Cay K2.
A is Cayley minimal if A is cyclotomic and
{K ≤ Aut(G ) : K ≈Cay AutG (A)} = {AutG (A)}.
ZG is 2- and Cayley minimal.

Corollary
Under assumption of Theorem suppose that A is cyclotomic and
AU/L is 2-minimal or Cayley minimal. Then A is a CI-S-ring.
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Application of Theorem to decomposable S-rings over an
elementary abelian group

G = C e
p , where p is a prime and e ≥ 1

An S-ring A over G is called a p-S-ring if |X | = pk for every
X ∈ S(A).
To prove that G is a DCI-group it is sufficient to prove that
every cyclotomic p-S-ring over G is a CI-S-ring (follows from
Kovács-Feng’s result).
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Application of Theorem to decomposable S-rings over an
elementary abelian group

The proof that every decomposable p-S-ring over C e
p , where

e ≤ 4, is a CI-S-ring not using Theorem takes approximately 5
pages.
The proof that every decomposable p-S-ring over C e

p , where
e ≤ 4, is a CI-S-ring using Theorem takes few lines.
The proof that every decomposable cyclotomic p-S-ring over
C 5
p is a CI-S-ring not using Theorem takes approximately 9

pages.
The proof that every decomposable p-S-ring over C e

p , where
e ≤ 4, is a CI-S-ring using Theorem takes 1 page.
Using Theorem it is possible to prove that in most cases
decomposable cyclotomic p-S-ring over C 6

p is a CI-S-ring.

Question
Let p be an odd prime. Is C 6

p a DCI-group?
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