# On Edge-transitive Factorizations of Complete Uniform Hypergraphs

#### Huye Chen

China Three Gorges University This is joint work with Zaiping Lu

August 18, 2018



ъ

# Outline



#### Edge-transitive factorizations of complete uniform hypergraphs

- Definitions and background
- Edge-transitive homogeneous factorizations of  $\mathcal{K}_n^k$
- Symmetric factorizations of  $\mathcal{K}_n^k$

## 2 Cayley hypergraph

- Definitions and background
- Normality of Cayley hypergraphs
- CHI-property of Cayley hypergraphs



# Outline



#### Edge-transitive factorizations of complete uniform hypergraphs

- Definitions and background
- Edge-transitive homogeneous factorizations of  $\mathcal{K}_n^k$
- Symmetric factorizations of  $\mathcal{K}_n^k$

#### 2 Cayley hypergraph

- Definitions and background
- Normality of Cayley hypergraphs
- CHI-property of Cayley hypergraphs



## Outline



Edge-transitive factorizations of complete uniform hypergraphs

Definitions and background

• Edge-transitive homogeneous factorizations of  $\mathcal{K}_n^k$ 

• Symmetric factorizations of  $\mathcal{K}_n^k$ 

#### 2 Cayley hypergraph

- Definitions and background
- Normality of Cayley hypergraphs
- CHI-property of Cayley hypergraphs



### Factorizations

• Let V be a finite set, and  $V^{\{k\}}$  be the set of all k-subsets of V.



æ

・ロト ・四ト ・ヨト ・ヨト

### Factorizations

- Let V be a finite set, and  $V^{\{k\}}$  be the set of all k-subsets of V.
  - k-uniform hypergraph (k-hypergraph): (V, E) with  $E \subset V^{\{k\}}$ .



ъ

### Factorizations

- Let V be a finite set, and  $V^{\{k\}}$  be the set of all k-subsets of V.
  - k-uniform hypergraph (k-hypergraph): (V, E) with  $E \subset V^{\{k\}}$ .
  - Complete k-hypergraph: the pair  $(V, V^{\{k\}})$ ;  $\mathcal{K}_n^k$  if |V| = n.



ъ

## Factorizations

- Let V be a finite set, and  $V^{\{k\}}$  be the set of all k-subsets of V.
  - k-uniform hypergraph (k-hypergraph): (V, E) with  $E \subset V^{\{k\}}$ .
  - Complete k-hypergraph: the pair  $(V, V^{\{k\}})$ ;  $\mathcal{K}_n^k$  if |V| = n.
  - Factorization: a partition  $\{F_1, F_2, \dots, F_s\}$  of  $V^{\{k\}}$  into s subsets every  $F_i$  covers V; an F(n,k,s)(on V), simply;



## Factorizations

- Let V be a finite set, and  $V^{\{k\}}$  be the set of all k-subsets of V.
  - k-uniform hypergraph (k-hypergraph): (V, E) with  $E \subset V^{\{k\}}$ .
  - Complete k-hypergraph: the pair  $(V, V^{\{k\}})$ ;  $\mathcal{K}_n^k$  if |V| = n.
  - Factorization: a partition  $\{F_1, F_2, \dots, F_s\}$  of  $V^{\{k\}}$  into s subsets every  $F_i$  covers V; an F(n,k,s)(on V), simply;
    - index: s; order: |V|;
    - factors:  $F_i$  or k-hypergraph  $(V, F_i)$ ;
    - 1-factorization: every  $F_i$  is a partition of V, yielding  $k \mid |V|$ .



ъ

## Factorizations

- Let V be a finite set, and  $V^{\{k\}}$  be the set of all k-subsets of V.
  - k-uniform hypergraph (k-hypergraph): (V, E) with  $E \subset V^{\{k\}}$ .
  - Complete k-hypergraph: the pair  $(V, V^{\{k\}})$ ;  $\mathcal{K}_n^k$  if |V| = n.
  - Factorization: a partition  $\{F_1, F_2, \dots, F_s\}$  of  $V^{\{k\}}$  into s subsets every  $F_i$  covers V; an F(n,k,s)(on V), simply;
    - index: s; order: |V|;
    - factors:  $F_i$  or k-hypergraph  $(V, F_i)$ ;
    - 1-factorization: every  $F_i$  is a partition of V, yielding  $k \mid |V|$ .

#### Theorem 1.1 (Baranyai's Theorem, 1975)

If n is divisible by k then the complete k-hypergraph  $\mathcal{K}_n^k$  admits a 1-factorization of index  $\binom{n-1}{k-1}$ .



A problem

#### Problem 1.2

Find 1-factorizations which are invariant under certain group actions.



ъ

(日) (四) (日) (日) (日)

## A problem

#### Problem 1.2

Find 1-factorizations which are invariant under certain group actions.

• A family of trivial examples:  

$$V = \{1, 2, 3, \dots, 2k\}$$

$$\mathcal{U}_{2k}^{k} := \{\{e, [2k] \setminus e\} | e \in {\binom{[2k]}{k}}\}$$

$$\mathcal{U}_{2k}^{k} \text{ is } S_{2k} \text{-invariant, that is, } \{e, e'\}^{\sigma} \in \mathcal{U}_{2k}^{k} \text{ for all } \sigma \in S_{2k}$$
with  $\{e, e'\} \in \mathcal{U}_{2k}^{k}; (S_{2k})_{\{e, e'\}}$  is transitive on  $V$ .



ъ

Transitive factorizations

• Let  $\mathcal{F} = \{F_1, F_2, \cdots, F_s\}$  be an  $\mathsf{F}(n, k, s)$  on V.



3

Transitive factorizations

# • Let $\mathcal{F} = \{F_1, F_2, \cdots, F_s\}$ be an $\mathsf{F}(n, k, s)$ on V.

• Aut  $\mathcal{F}$ : the subgroup of Sym(V) preserving partition  $\mathcal{F}$ .



ъ

### Transitive factorizations

### • Let $\mathcal{F} = \{F_1, F_2, \cdots, F_s\}$ be an $\mathsf{F}(n, k, s)$ on V.

- Aut $\mathcal{F}$ : the subgroup of  $\operatorname{Sym}(V)$  preserving partition  $\mathcal{F}$ .
- $\operatorname{Aut}(\mathcal{F}, F_i)$ : the subgroup of  $\operatorname{Aut}\mathcal{F}$  fixing  $F_i$  set-wise.



ъ

## Transitive factorizations

#### • Let $\mathcal{F} = \{F_1, F_2, \cdots, F_s\}$ be an $\mathsf{F}(n, k, s)$ on V.

- Aut  $\mathcal{F}$ : the subgroup of Sym(V) preserving partition  $\mathcal{F}$ .
- $\operatorname{Aut}(\mathcal{F}, F_i)$ : the subgroup of  $\operatorname{Aut}\mathcal{F}$  fixing  $F_i$  set-wise.
- Factor-transitive: Aut $\mathcal{F}$  acts transitively on the partition  $\mathcal{F}$ .



ъ

## Transitive factorizations

#### • Let $\mathcal{F} = \{F_1, F_2, \cdots, F_s\}$ be an $\mathsf{F}(n, k, s)$ on V.

- Aut $\mathcal{F}$ : the subgroup of  $\operatorname{Sym}(V)$  preserving partition  $\mathcal{F}$ .
- $\operatorname{Aut}(\mathcal{F}, F_i)$ : the subgroup of  $\operatorname{Aut}\mathcal{F}$  fixing  $F_i$  set-wise.
- Factor-transitive: Aut $\mathcal{F}$  acts transitively on the partition  $\mathcal{F}$ .
- Vertex-transitive: factor-transitive and  $Aut(\mathcal{F}, F_i)$  is transitive on V.



ъ

## Transitive factorizations

#### • Let $\mathcal{F} = \{F_1, F_2, \cdots, F_s\}$ be an $\mathsf{F}(n, k, s)$ on V.

- Aut  $\mathcal{F}$ : the subgroup of Sym(V) preserving partition  $\mathcal{F}$ .
- $\operatorname{Aut}(\mathcal{F}, F_i)$ : the subgroup of  $\operatorname{Aut}\mathcal{F}$  fixing  $F_i$  set-wise.
- Factor-transitive: Aut $\mathcal{F}$  acts transitively on the partition  $\mathcal{F}$ .
- Vertex-transitive: factor-transitive and  $Aut(\mathcal{F}, F_i)$  is transitive on V.
- Edge-transitive: factor-transitive and  $Aut(\mathcal{F}, F_i)$  is transitive on  $F_i$ .



## Transitive factorizations

#### • Let $\mathcal{F} = \{F_1, F_2, \cdots, F_s\}$ be an $\mathsf{F}(n, k, s)$ on V.

- Aut  $\mathcal{F}$ : the subgroup of Sym(V) preserving partition  $\mathcal{F}$ .
- $\operatorname{Aut}(\mathcal{F}, F_i)$ : the subgroup of  $\operatorname{Aut}\mathcal{F}$  fixing  $F_i$  set-wise.
- Factor-transitive: Aut $\mathcal{F}$  acts transitively on the partition  $\mathcal{F}$ .
- Vertex-transitive: factor-transitive and  $Aut(\mathcal{F}, F_i)$  is transitive on V.
- Edge-transitive: factor-transitive and  $Aut(\mathcal{F}, F_i)$  is transitive on  $F_i$ .
- Homogeneous:  $\bigcap_{i=1}^{s} \operatorname{Aut}(\mathcal{F}, F_i)$  is transitive on V, called an  $\operatorname{HF}(n, k, s)$ .



## Transitive factorizations

### • Let $\mathcal{F} = \{F_1, F_2, \cdots, F_s\}$ be an $\mathsf{F}(n, k, s)$ on V.

- Aut $\mathcal{F}$ : the subgroup of  $\operatorname{Sym}(V)$  preserving partition  $\mathcal{F}$ .
- $\operatorname{Aut}(\mathcal{F}, F_i)$ : the subgroup of  $\operatorname{Aut}\mathcal{F}$  fixing  $F_i$  set-wise.
- Factor-transitive: Aut $\mathcal{F}$  acts transitively on the partition  $\mathcal{F}$ .
- Vertex-transitive: factor-transitive and  $Aut(\mathcal{F}, F_i)$  is transitive on V.
- Edge-transitive: factor-transitive and  $Aut(\mathcal{F}, F_i)$  is transitive on  $F_i$ .
- Homogeneous:  $\bigcap_{i=1}^{s} \operatorname{Aut}(\mathcal{F}, F_i)$  is transitive on V, called an  $\operatorname{HF}(n, k, s)$ .
- Symmetric: vertex-transitive + edge-transitive, called an SF(n, k, s).



(日)

## Transitive factorizations

### • Let $\mathcal{F} = \{F_1, F_2, \cdots, F_s\}$ be an $\mathsf{F}(n, k, s)$ on V.

- Aut  $\mathcal{F}$ : the subgroup of  $\operatorname{Sym}(V)$  preserving partition  $\mathcal{F}$ .
- $\operatorname{Aut}(\mathcal{F}, F_i)$ : the subgroup of  $\operatorname{Aut}\mathcal{F}$  fixing  $F_i$  set-wise.
- Factor-transitive: Aut $\mathcal{F}$  acts transitively on the partition  $\mathcal{F}$ .
- Vertex-transitive: factor-transitive and  $Aut(\mathcal{F}, F_i)$  is transitive on V.
- Edge-transitive: factor-transitive and  $Aut(\mathcal{F}, F_i)$  is transitive on  $F_i$ .
- Homogeneous:  $\bigcap_{i=1}^{s} \operatorname{Aut}(\mathcal{F}, F_i)$  is transitive on V, called an  $\operatorname{HF}(n, k, s)$ .
- Symmetric: vertex-transitive + edge-transitive, called an SF(n, k, s).
- Edge-transitive homogeneous factorizations i.e.  $\mathsf{SHF}(n,k,s)$



## Known results

- Cameron and Korchmaros (1993): One-factorizations of complete graphs with a doubly transitive automorphism group.
- ② Li and Praeger (2003): HF for complete graphs.
- Sibley (2004): SF for complete graph with  $Aut\mathcal{F}$  is not affine permutation group but acts 2-transitive on V.
- Li, Lim and Praeger (2009): HF of complete graphs with all factors admitting a common edge-transitive group.



# Known results

- Cameron and Korchmaros (1993): One-factorizations of complete graphs with a doubly transitive automorphism group.
- ② Li and Praeger (2003): HF for complete graphs.
- **3** Sibley (2004): SF for complete graph with  $Aut\mathcal{F}$  is not affine permutation group but acts 2-transitive on V.
- Li, Lim and Praeger (2009): HF of complete graphs with all factors admitting a common edge-transitive group.

#### Remark 1.3 (Chen and Lu)

SF for complete graph with  $\mathsf{Aut}\mathcal{F}$  an affine 2-homogeneous permutation group is SHF.



The aims

• Classify edge-transitive homogeneous factorizations of complete k-hypergraphs, where  $k \ge 3$ .



(日)

The aims

- Classify edge-transitive homogeneous factorizations of complete k-hypergraphs, where  $k \geq 3$ .
- Classify symmetric factorizations of complete k-hypergraphs, where  $k \geq 3$ .



## Outline



Edge-transitive factorizations of complete uniform hypergraphsDefinitions and background

• Edge-transitive homogeneous factorizations of  $\mathcal{K}_n^k$ 

• Symmetric factorizations of  $\mathcal{K}_n^k$ 

#### 2 Cayley hypergraph

- Definitions and background
- Normality of Cayley hypergraphs
- CHI-property of Cayley hypergraphs



 $\mathsf{SHF}(n,k,s)$ 

If 
$$F(n,k,s) = \{F_1, F_2, \cdots, F_s\}$$
 is SHF or SF



(日)

 $\mathsf{SHF}(n,k,s)$ 

If 
$$\mathsf{F}(n,k,s) = \{F_1, F_2, \cdots, F_s\}$$
 is SHF or SF

₩



(日)

 $\mathsf{SHF}(n,k,s)$ 

If 
$$\mathsf{F}(n,k,s) = \{F_1,F_2,\cdots,F_s\}$$
 is SHF or SF  $\Downarrow$ 

•  $\operatorname{Aut}\mathcal{F}$  is a k-homogeneous permutation groups on V



æ

・ロト ・四ト ・ヨト ・ヨト

 $\mathsf{SHF}(n,k,s)$ 

٠

If 
$$\mathsf{F}(n,k,s) = \{F_1,F_2,\cdots,F_s\}$$
 is SHF or SF  $\Downarrow$ 

- $\operatorname{Aut}\mathcal{F}$  is a k-homogeneous permutation groups on V
- $\mathsf{F}(n,k,s)$  is the immprimitive block systems of  $\mathsf{Aut}\mathcal{F}$  acting on  $V^{\{k\}}$



ъ

・ロト ・四ト ・ヨト ・ヨト

Construction of SHF

• G k-homogeneous permutation group on V



## Construction of SHF

- G k-homogeneous permutation group on V
- M minimal normal subgroup of G



(日)

## Construction of SHF

- $\bullet \ G \quad k \text{-homogeneous permutation group on } V$
- M minimal normal subgroup of G

• 
$$v \in e \in V^{\{k\}}$$
;  $G = MG_u$ 



## Construction of SHF

- $\bullet \ G \quad k \text{-homogeneous permutation group on } V$
- M minimal normal subgroup of G
- $v \in e \in V^{\{k\}}$ ;  $G = MG_v$
- take a subgroup H of G such that  $G_e \leq MH \rightleftharpoons G$



## Construction of SHF

- $\bullet \ G \quad k \text{-homogeneous permutation group on } V$
- M minimal normal subgroup of G
- $v \in e \in V^{\{k\}}$ ;  $G = MG_v$
- take a subgroup H of G such that  $G_e \leq MH \rightleftharpoons G$
- $E = e^{MH}$  consists of  $|MH : (MG_e)|$  orbits of M on  $V^{\{k\}}$



## Construction of SHF

- $\bullet \ G \quad k \text{-homogeneous permutation group on } V$
- M minimal normal subgroup of G

• 
$$v \in e \in V^{\{k\}}$$
;  $G = MG_v$ 

- take a subgroup H of G such that  $G_e \leq MH \lneq G$
- $E = e^{MH}$  consists of  $|MH : (MG_e)|$  orbits of M on  $V^{\{k\}}$
- $\mathcal{F} := \{E^g \mid g \in G\}$ edge-transitive homogeneous (k, s)-factorizations on V, where s = |G : (MH)|



(日)

## Theorem 1.4 (Chen and Lu,2018)

There exists an SHF(n, k, s) for  $n \ge 2k \ge 6$  and  $s \ge 2 \Leftrightarrow (n, k, s)$  is one of (32, 3, 5), (32, 3, 31), (33, 4, 5),  $(2^d, 3, \frac{(2^d-1)(2^{d-1}-1)}{3})$  and (q+1, 3, 2), where  $d \ge 3$  and q a prime power with  $q \equiv 1 \pmod{4}$ . In particular, there is no SHF 1-factorization of index  $s \ge 2$  and order  $n \ge 6$ .



(日)、(四)、(日)、(日)

# Remark

A k-hypergraph on n vertices is t-subset regular if there is a constant  $\lambda \geq 1$  such that each t-subset of V is contained in exactly  $\lambda$  edges. Note that each t-subset regular k-hypergraph is a  $t - (v, k, \lambda)$  design. The factors of  $\mathcal{F}$  in Theorem 1.4 are t-subset regular k-hypergraph with t and  $\lambda$  listed in Table 1

| n     | k | s, N                           | t | $\lambda$       | Condition             |
|-------|---|--------------------------------|---|-----------------|-----------------------|
| 32    | 3 | 5                              | 2 | 6               |                       |
| 32    | 3 | 31                             | 1 | 15              |                       |
| 33    | 4 | 5                              | 3 | 6               |                       |
| $2^d$ | 3 | $\frac{(2^d-1)(2^{d-1}-1)}{3}$ | 1 | 3               | $d \ge 3$             |
| q+1   | 3 | $\tilde{2}$                    | 2 | $\frac{q-1}{2}$ | $q \equiv 1 \pmod{4}$ |

Table: The parameters t and  $\lambda$ .



ъ

# Remark

A large set of  $t-(v, k, \lambda)$  designs of size N, denoted by LS[N](t, k, n), is a partition of  $V^{\{k\}}$  (|V| = n)into block sets of N disjoint  $t - (v, k, \lambda)$  designs. Clearly, each  $\mathcal{F}$  in Theorem 1.4 is an LS[N](t, k, n)in which all designs are flag-transitive and admit a common pointtransitive group, where N, k, t and n are listed in Table 1.



# Outline



# $Edge-transitive\ factorizations\ of\ complete\ uniform\ hypergraphs$

- Definitions and background
- Edge-transitive homogeneous factorizations of  $\mathcal{K}_n^k$

• Symmetric factorizations of  $\mathcal{K}_n^k$ 

## 2 Cayley hypergraph

- Definitions and background
- Normality of Cayley hypergraphs
- CHI-property of Cayley hypergraphs



 $\mathsf{SF}(n,k,s)$ 

Clearly, SHF is SF. Then we want to classify all the SF(n, k, s) with  $k \geq 3$ . By the way, we obtain all the symmetrical 1-factorizations with  $k \geq 3$ .



Construction of SF

• G k-homogeneous permutation group on V



# Construction of SF

- $\bullet \ G \quad k \text{-homogeneous permutation group on } V$
- Take a transitive subgroup X of G



(日)

# Construction of SF

- $\bullet \ G \quad k \text{-homogeneous permutation group on } V$
- $\bullet\,$  Take a transitive subgroup X of G

• 
$$\mathsf{Soc}(G) \nleq X \leq G$$

• 
$$X_e = G_e$$
 for some  $e \in V^{\{k\}}$ 

• X is not k-homogeneous permutation group on V



# Construction of $\mathsf{SF}$

- $\bullet \ G \quad k \text{-homogeneous permutation group on } V$
- $\bullet\,$  Take a transitive subgroup X of G

• 
$$\mathsf{Soc}(G) \notin X \le G$$

• 
$$X_e = G_e$$
 for some  $e \in V^{\{k\}}$ 

• X is not k-homogeneous permutation group on V

• 
$$\mathcal{F} := \{ \{ e^{Xg} \} \mid g \in G \}$$
  
symmetric  $(k, s)$ -factorizations on  $V$ , where  $s = |G : X|$ 



## Theorem 1.5 (Chen and Lu, 2017)

For  $6 \leq 2k \leq n$ , there is a symmetric 1-factorization  $\Leftrightarrow$  either n = 2k or  $(n,k) \in \{(q+1,3), (24,4)\}, q$  is a prime power with  $11 \leq q \equiv 2 \pmod{3}$ .

### Theorem 1.6 (Chen and Lu, 2017)

Let  $\mathcal{F}$  be an SF(n,k,s) with  $n \geq 2k \geq 6$  and  $s \geq 2$ . Then

- **①**  $\mathcal{F}$  is homogeneous; or
- **2**  $\mathcal{F}$  is a 1-factorization; or
- $\ \, {\color{black} {0 } \hspace{0.1 cm} (n,k,s) \in \{(8,3,7), (12,3,11), (20,3,57), (12,5,66)\} }$



3

#### On Edge-transitive Factorizations of Complete Uniform Hypergraphs Cayley hypergraph

# Outline

Edge-transitive factorizations of complete uniform hypergraphs
 Definitions and background

• Edge-transitive homogeneous factorizations of  $\mathcal{K}_n^k$ 

• Symmetric factorizations of  $\mathcal{K}_n^k$ 

## 2 Cayley hypergraph

- Definitions and background
- Normality of Cayley hypergraphs
- CHI-property of Cayley hypergraphs



э

Cayley hypergraph Definitions and background

# Outline

Edge-transitive factorizations of complete uniform hypergraphs
 Definitions and background

• Edge-transitive homogeneous factorizations of  $\mathcal{K}_n^k$ 

• Symmetric factorizations of  $\mathcal{K}_n^k$ 

2 Cayley hypergraph

- Definitions and background
- Normality of Cayley hypergraphs
- CHI-property of Cayley hypergraphs



э

Cayley hypergraph Definitions and background

## Definition 2.1

Given a finite group G and a symmetric connector set  $S \subset G \setminus e$ , the Cayley graph, denoted Cay(G, S), is the graph with V = G and  $E = \{(x, y) \in V \times V \mid yx^{-1} \in S\}$  (i.e y = sx for some  $s \in S$ .)



ъ

イロト 不得下 イヨト イヨト

Cayley hypergraph Definitions and background

### Definition 2.1

Given a finite group G and a symmetric connector set  $S \subset G \setminus e$ , the Cayley graph, denoted Cay(G, S), is the graph with V = G and  $E = \{(x, y) \in V \times V \mid yx^{-1} \in S\}$  (i.e y = sx for some  $s \in S$ .)

## Definition 2.2 (M. Buratti, 1994)

Let G be a finite group,  $\Omega$  a subset of  $G \setminus e$  and t an integer satisfying  $2 \leq t \leq max\{o(\omega) \mid \omega \in \Omega\}$ ; the t-Cayley hypergraph  $\mathcal{H} = t - \mathsf{Cay}(G, \Omega)$  of G over  $\Omega$  is defined by:

•  $V(\mathcal{H}) := G;$ 

•  $E(\mathcal{H}) := \{\{g, \omega g, \cdots, \omega^{t-1}g\} \mid g \in G, \omega \in \Omega\}.$ 



Cayley hypergraph Definitions and background

## Definition 2.3 (J. Lee and Y. S. Kwon, 2013)

Let G be a finite group and let S be a set of subsets  $S_1, S_2, S_3, \dots, S_k$  of  $G \setminus \{e\}$ . A Cayley hypergraph CH(G, S) is defined by:

• V(CH) = G;

• 
$$E(CH) = \{g, S_i g | g \in G, S_i \in \mathcal{S}\}.$$



Cayley hypergraph Definitions and background

Definition 2.3 (J. Lee and Y. S. Kwon, 2013)

Let G be a finite group and let S be a set of subsets  $S_1, S_2, S_3, \dots, S_k$  of  $G \setminus \{e\}$ . A Cayley hypergraph CH(G, S) is defined by:

- V(CH) = G;
- $E(CH) = \{g, S_i g | g \in G, S_i \in \mathcal{S}\}.$
- A Cayley hypergraph  $\mathsf{CH}(G, \mathcal{S})$  is said to be a normal Cayley hypergraph if  $R(G) \trianglelefteq \mathsf{Aut}(\mathsf{CH}(G, \mathcal{S}))$ . (M. Alaeiyan, 2007)



Cayley hypergraph Definitions and background

## Definition 2.3 (J. Lee and Y. S. Kwon, 2013)

Let G be a finite group and let S be a set of subsets  $S_1, S_2, S_3, \dots, S_k$  of  $G \setminus \{e\}$ . A Cayley hypergraph CH(G, S) is defined by:

• 
$$V(\mathsf{CH}) = G;$$

• 
$$E(\mathsf{CH}) = \{g, S_i g | g \in G, S_i \in \mathcal{S}\}.$$

- A Cayley hypergraph  $\mathsf{CH}(G, \mathcal{S})$  is said to be a normal Cayley hypergraph if  $R(G) \trianglelefteq \mathsf{Aut}(\mathsf{CH}(G, \mathcal{S}))$ . (M. Alaeiyan, 2007)
- A Cayley hypergraph  $\mathsf{CH}(G, \mathcal{S})$  is called a  $\mathsf{CHI-hypergraph}$ of G, if whenever  $\mathsf{CH}(G, \mathcal{S}) \cong \mathsf{CH}(G, \mathcal{T})$ , there is an element  $\sigma \in \mathsf{Aut}(G)$  such that  $\mathcal{S}^{\sigma} = \mathcal{T}$ , and  $\mathcal{S}$  is called a  $\mathsf{CHI-subset}$ .



Cayley hypergraph Definitions and background

# Some known results about the automorphism group of transitive hypergraph:



æ

Some known results about the automorphism group of transitive hypergraph:

• Lee and Kwon (2013) A connected hypergraph is a Cayley hypergraph if and only if its automorphism group contains a regular subgroup



ъ

Some known results about the automorphism group of transitive hypergraph:

- Lee and Kwon (2013) A connected hypergraph is a Cayley hypergraph if and only if its automorphism group contains a regular subgroup
- Babai and Cameron (2015) Except for the alternating groups and finitely many others, every primitive permutation group is the full automorphism group of an edge-transitive hypergraph



ъ

Some known results about the automorphism group of transitive hypergraph:

- Lee and Kwon (2013) A connected hypergraph is a Cayley hypergraph if and only if its automorphism group contains a regular subgroup
- Babai and Cameron (2015) Except for the alternating groups and finitely many others, every primitive permutation group is the full automorphism group of an edge-transitive hypergraph
- Spiga (2016) Obtain the explicit list of finite primitive groups which are not automorphism groups of edge-transitive hypergraphs



Cayley hypergraph Definitions and background

## Theorem 2.1 (Chen and Lu)

Let  $\mathcal{H} = \mathsf{CH}(G, \mathcal{S})$  be a Cayley hypergraph. Then  $\mathcal{H}$  is connected if and only if  $\bigcup_{i=1}^{k} S_i$  generate G where  $\mathcal{S} = \{S_1, S_2, \cdots, S_k\}$ .

## Theorem 2.2 (Chen and Lu)

Let CH(G, S) be a Cayley hypergraph. Then the degree of this hypergraph is  $d_{CH} \leq k + |S_1| + |S_2| + |S_3| + \cdots + |S_k|$ .



Cayley hypergraph Normality of Cayley hypergraphs

# Outline

Edge-transitive factorizations of complete uniform hypergraphs
 Definitions and background

- Edge-transitive homogeneous factorizations of  $\mathcal{K}_n^k$
- Symmetric factorizations of  $\mathcal{K}_n^k$

# 2 Cayley hypergraph• Definitions and background

- Normality of Cayley hypergraphs
- CHI-property of Cayley hypergraphs



э

Cayley hypergraph Normality of Cayley hypergraphs

## Theorem 2.3 (Chen and Lu)

Let  $S_i \neq \{1, S_x \setminus s_{xy}\}^{R(a)\sigma}$  for any  $a \in G$ ,  $\sigma \in Aut(G)$  where  $x \in \{1, 2, 3, \dots, k\}$  and  $s_{xy} \in S_x$ . Then the Cayley hypergraph CH(G, S) is normal if and only if  $A_1 \subset Aut(G)$ .



イロト 不得下 イヨト イヨト

Cayley hypergraph Normality of Cayley hypergraphs

## Theorem 2.3 (Chen and Lu)

Let  $S_i \neq \{1, S_x \setminus s_{xy}\}^{R(a)\sigma}$  for any  $a \in G$ ,  $\sigma \in Aut(G)$  where  $x \in \{1, 2, 3, \dots, k\}$  and  $s_{xy} \in S_x$ . Then the Cayley hypergraph CH(G, S) is normal if and only if  $A_1 \subset Aut(G)$ .

### Theorem 2.4 (Chen and Lu)

Let  $\mathcal{H}$  be a vertex-transitive hypergraph whose automorphism group  $\operatorname{Aut}(\mathcal{H})$  is abelian. Then  $\operatorname{Aut}(\mathcal{H})$  acts regularly on the vertex set of  $\mathcal{H}$  and  $\mathcal{H}$  is a Cayley hypergraph  $\operatorname{CH}(G, \mathcal{S})$ . Moreover if  $\mathcal{S}^{-1} = \mathcal{S}$ , then  $\operatorname{Aut}(\operatorname{CH}(G, \mathcal{S})) \cong \mathbb{Z}_2^k$  for some integer k.



Cayley hypergraph CHI-property of Cayley hypergraphs

# Outline

Edge-transitive factorizations of complete uniform hypergraphs
 Definitions and background

- Edge-transitive homogeneous factorizations of  $\mathcal{K}_n^k$
- Symmetric factorizations of  $\mathcal{K}_n^k$

## 2 Cayley hypergraph

- Definitions and background
- Normality of Cayley hypergraphs
- CHI-property of Cayley hypergraphs



э

Cayley hypergraph CHI-property of Cayley hypergraphs

## Theorem 2.5 (Chen and Lu)

Let  $X := \mathsf{CH}(G, S)$  and  $\mathsf{A} := \mathsf{Aut}(X)$ . Then S is a  $\mathsf{CHI}$ -subset of G if and only if for any  $\sigma \in \operatorname{Sym}(G)$  whenever  $\sigma R(G)\sigma^{-1} \leq \mathsf{A}$  there is an element  $a \in \mathsf{A}$  such that  $aR(G)a^{-1} = \sigma R(G)\sigma^{-1}$ .



・ロト ・ 一下・ ・ 日 ・ ・ 日 ・

Cayley hypergraph CHI-property of Cayley hypergraphs

#### Theorem 2.5 (Chen and Lu)

Let  $X := \mathsf{CH}(G, \mathcal{S})$  and  $\mathsf{A} := \mathsf{Aut}(X)$ . Then  $\mathcal{S}$  is a  $\mathsf{CHI}$ -subset of G if and only if for any  $\sigma \in \operatorname{Sym}(G)$  whenever  $\sigma R(G)\sigma^{-1} \leq \mathsf{A}$  there is an element  $a \in \mathsf{A}$  such that  $aR(G)a^{-1} = \sigma R(G)\sigma^{-1}$ .

## Theorem 2.6 (Chen and Lu)

Let G be a finite p-group for some prime p. If X = CH(G, S)with  $S = \{S_1, S_2, S_3, \dots, S_k\}$  and  $\sum_{i=1}^k |S_i| + k < p$ , then X is a CHI-hypergraph.



On Edge-transitive Factorizations of Complete Uniform Hypergraphs Cayley hypergraph CHI-property of Cayley hypergraphs

# References

- L. Babai and P. J. Cameron, Most primitive groups are full automorphism groups of edge-transitive hypergraphs, J. Algebra, 421(2015), 512-523.
- Z. Baranyai, On the factorization of the complete uniform hypergraph. In *infinite and finite sets* (Colloq., Keszthely, 1973), Vol. I, pp. 91-108. Colloq. Math. Soc. Jánōs Bolyai, Vol. 10. North-Holland, Amsterdam, 1975.
- M. Buratti, Cayley, Marty and Schreier hypergraphs, *Abh. Math. Sem. Univ. Hamburg*, 64(1994), 151-162.
- P. J. Cameron and G. Korchmáros, One-factorization of complete graphs with a doubly transitive automorphism group, *Bull. London Math. Soc.*, 25(1993), 1-6.



On Edge-transitive Factorizations of Complete Uniform Hypergraphs Cayley hypergraph CHI-property of Cayley hypergraphs

# References

- H. Y. Chen and Z. P. Lu, Edge-transitive homogeneous factorizations of complete uniform hypergraphs, J. Graph Theory, 87(3)(2018), 305-316.
- H. Y. Chen and Z. P. Lu, Symmetric factorizations of complete uniform hypergraph, J. Algebraic Combin., 46(2017), 475-497.
- J. Lee and Y. S. Kwon, Cayley hypergraphs and Cayley hypermaps, *Discrete Math.*, 313(4)(2013), 540-549.
- C. H. Li, T. K. Lim and C. E. Praeger, Homogeneous factorisations of complete graphs with edge-transitive factors, J. Algebraic Combin., 29(2009), 107-132.



On Edge-transitive Factorizations of Complete Uniform Hypergraphs Cayley hypergraph CHI-property of Cayley hypergraphs

References

- C. H. Li and C. E. Praeger, On partitioning the orbitals of a transitive permutation group, *Trans. Amer. Math. Soc.*, 355(2003), 637-653.
- T. Q. Sibley, On classifying finite edge colored graphs with two transitive automorphism groups. J. Combin. Theory Ser. B, 90(2004), 121-138.
- P. Spiga, Finite primitive groups and edge-transitive hypergraphs, J. Algebraic Combin., 43(2016), 715-734.



Cayley hypergraph CHI-property of Cayley hypergraphs

# Thank you for your attention!



æ

・ロト ・ 日 ト ・ 日 ト ・ 日 ト