On Edge-transitive Factorizations of Complete Uniform Hypergraphs

Huye Chen

China Three Gorges University This is joint work with Zaiping Lu

August 18, 2018

K ロ ⊁ K 倒 ≯ K 差 ⊁ K 差 ≯ … 差

Outline

1 [Edge-transitive factorizations of complete uniform hypergraphs](#page-2-0)

- [Definitions and background](#page-3-0)
- [Edge-transitive homogeneous factorizations of](#page-25-0) \mathcal{K}_n^k
- [Symmetric factorizations of](#page-39-0) \mathcal{K}_n^k

2 [Cayley hypergraph](#page-46-0)

- [Definitions and background](#page-47-0)
- [Normality of Cayley hypergraphs](#page-58-0)
- CHI[-property of Cayley hypergraphs](#page-61-0)

Outline

1 [Edge-transitive factorizations of complete uniform hypergraphs](#page-2-0)

- [Definitions and background](#page-3-0)
- [Edge-transitive homogeneous factorizations of](#page-25-0) \mathcal{K}_n^k
- [Symmetric factorizations of](#page-39-0) \mathcal{K}_n^k

[Cayley hypergraph](#page-46-0)

- [Definitions and background](#page-47-0)
- [Normality of Cayley hypergraphs](#page-58-0)
- CHI[-property of Cayley hypergraphs](#page-61-0)

Outline

1 [Edge-transitive factorizations of complete uniform hypergraphs](#page-2-0) • [Definitions and background](#page-3-0)

[Edge-transitive homogeneous factorizations of](#page-25-0) \mathcal{K}_n^k

[Symmetric factorizations of](#page-39-0) \mathcal{K}_n^k

[Cayley hypergraph](#page-46-0)

- [Definitions and background](#page-47-0)
- [Normality of Cayley hypergraphs](#page-58-0)
- CHI[-property of Cayley hypergraphs](#page-61-0)

 $(1 - 4)$ $(1 -$

Factorizations

Let V be a finite set, and $V^{\{k\}}$ be the set of all k-subsets of V .

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0$

Factorizations

- Let V be a finite set, and $V^{\{k\}}$ be the set of all k-subsets of V .
	- k-uniform hypergraph (k-hypergraph): (V, E) with $E \subset V^{\{k\}}$.

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0$

Factorizations

- Let V be a finite set, and $V^{\{k\}}$ be the set of all k-subsets of V .
	- k-uniform hypergraph (k-hypergraph): (V, E) with $E \subset V^{\{k\}}$.
	- Complete k-hypergraph: the pair $(V, V^{\{k\}}); \mathcal{K}_n^k$ if $|V| = n$.

Factorizations

- Let V be a finite set, and $V^{\{k\}}$ be the set of all k-subsets of V .
	- k-uniform hypergraph (k-hypergraph): (V, E) with $E \subset V^{\{k\}}$.
	- Complete k-hypergraph: the pair $(V, V^{\{k\}});$ \mathcal{K}_n^k if $|V| = n$.
	- Factorization: a partition $\{F_1, F_2, \cdots, F_s\}$ of $V^{\{k\}}$ into s subsets every F_i covers V; an $F(n,k,s)$ (on V), simply;

 \Rightarrow

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0$

Factorizations

- Let V be a finite set, and $V^{\{k\}}$ be the set of all k-subsets of V .
	- k-uniform hypergraph (k-hypergraph): (V, E) with $E \subset V^{\{k\}}$.
	- Complete k-hypergraph: the pair $(V, V^{\{k\}});$ \mathcal{K}_n^k if $|V| = n$.
	- Factorization: a partition $\{F_1, F_2, \cdots, F_s\}$ of $V^{\{k\}}$ into s subsets every F_i covers V; an $F(n,k,s)$ (on V), simply;
		- \bullet index: s; order: $|V|$;
		- factors: F_i or k-hypergraph (V, F_i) ;
		- 1-factorization: every F_i is a partition of V, yielding $k \mid |V|$.

Factorizations

- Let V be a finite set, and $V^{\{k\}}$ be the set of all k-subsets of V .
	- k-uniform hypergraph (k-hypergraph): (V, E) with $E \subset V^{\{k\}}$.
	- Complete k-hypergraph: the pair $(V, V^{\{k\}});$ \mathcal{K}_n^k if $|V| = n$.
	- Factorization: a partition $\{F_1, F_2, \cdots, F_s\}$ of $V^{\{k\}}$ into s subsets every F_i covers V; an $F(n,k,s)$ (on V), simply;
		- \bullet index: s; order: $|V|$;
		- factors: F_i or k-hypergraph (V, F_i) ;
		- 1-factorization: every F_i is a partition of V, yielding $k \mid |V|$.

Theorem 1.1 (Baranyai's Theorem, 1975)

If n is divisible by k then the complete k-hypergraph \mathcal{K}_n^k admits a 1-factorization of index $\binom{n-1}{k-1}$.

 4 O \rightarrow 4 $\overline{7}$ \rightarrow 4 $\overline{2}$ \rightarrow 4 $\overline{2}$ \rightarrow

A problem

Problem 1.2

Find 1-factorizations which are invariant under certain group actions.

 $\bar{\Xi}$

イロト イ部 トイ君 トイ君 トー

A problem

Problem 1.2

Find 1-factorizations which are invariant under certain group actions.

\n- A family of trivial examples:\n
$$
V = \{1, 2, 3, \cdots, 2k\}
$$
\n
$$
\mathcal{U}_{2k}^k := \{ \{e, [2k] \setminus e\} | e \in \binom{[2k]}{k} \}
$$
\n
$$
\mathcal{U}_{2k}^k
$$
\n is S_{2k} -invariant, that is, $\{e, e'\}^{\sigma} \in \mathcal{U}_{2k}^k$ for all $\sigma \in S_{2k}$ with $\{e, e'\} \in \mathcal{U}_{2k}^k$; $(S_{2k})_{\{e, e'\}}$ is transitive on V .

\n
\n

 $\bar{\Xi}$

K ロ ▶ | K 個 ▶ | K 重 ▶ | K 重 ▶ | L

Transitive factorizations

• Let $\mathcal{F} = \{F_1, F_2, \cdots, F_s\}$ be an $\mathsf{F}(n, k, s)$ on V.

Transitive factorizations

• Let $\mathcal{F} = \{F_1, F_2, \cdots, F_s\}$ be an $F(n, k, s)$ on V.

• Aut \mathcal{F} : the subgroup of Sym (V) preserving partition \mathcal{F} .

 $(1 + 4)$

Transitive factorizations

• Let $\mathcal{F} = \{F_1, F_2, \cdots, F_s\}$ be an $F(n, k, s)$ on V.

- Aut F: the subgroup of Sym(V) preserving partition \mathcal{F} .
- Aut (\mathcal{F}, F_i) : the subgroup of Aut \mathcal{F} fixing F_i set-wise.

Transitive factorizations

• Let $\mathcal{F} = \{F_1, F_2, \cdots, F_s\}$ be an $F(n, k, s)$ on V.

- Aut F: the subgroup of Sym(V) preserving partition \mathcal{F} .
- Aut (\mathcal{F}, F_i) : the subgroup of Aut \mathcal{F} fixing F_i set-wise.
- Factor-transitive: Aut $\mathcal F$ acts transitively on the partition $\mathcal F$.

Transitive factorizations

• Let $\mathcal{F} = \{F_1, F_2, \cdots, F_s\}$ be an $F(n, k, s)$ on V.

- Aut \mathcal{F} : the subgroup of Sym(V) preserving partition \mathcal{F} .
- Aut (\mathcal{F}, F_i) : the subgroup of Aut \mathcal{F} fixing F_i set-wise.
- Factor-transitive: Aut $\mathcal F$ acts transitively on the partition $\mathcal F$.
- Vertex-transitive: factor-transitive and $\mathsf{Aut}(\mathcal{F}, F_i)$ is transitive on V

Transitive factorizations

• Let $\mathcal{F} = \{F_1, F_2, \cdots, F_s\}$ be an $F(n, k, s)$ on V.

- Aut F: the subgroup of Sym(V) preserving partition \mathcal{F} .
- Aut (\mathcal{F}, F_i) : the subgroup of Aut \mathcal{F} fixing F_i set-wise.
- Factor-transitive: Aut $\mathcal F$ acts transitively on the partition $\mathcal F$.
- Vertex-transitive: factor-transitive and $\mathsf{Aut}(\mathcal{F}, F_i)$ is transitive on V .
- Edge-transitive: factor-transitive and $\mathsf{Aut}(\mathcal{F}, F_i)$ is transitive on F_i .

Transitive factorizations

• Let $\mathcal{F} = \{F_1, F_2, \cdots, F_s\}$ be an $\mathsf{F}(n, k, s)$ on V.

- Aut F: the subgroup of Sym(V) preserving partition \mathcal{F} .
- Aut (\mathcal{F}, F_i) : the subgroup of Aut \mathcal{F} fixing F_i set-wise.
- Factor-transitive: Aut $\mathcal F$ acts transitively on the partition $\mathcal F$.
- Vertex-transitive: factor-transitive and $\mathsf{Aut}(\mathcal{F}, F_i)$ is transitive on V .
- Edge-transitive: factor-transitive and $\mathsf{Aut}(\mathcal{F}, F_i)$ is transitive on F_i .
- Homogeneous: $\bigcap_{i=1}^s \text{Aut}(\mathcal{F}, F_i)$ is transitive on V, called an $HF(n, k, s)$.

Transitive factorizations

• Let $\mathcal{F} = \{F_1, F_2, \cdots, F_s\}$ be an $\mathsf{F}(n, k, s)$ on V.

- Aut F: the subgroup of Sym(V) preserving partition \mathcal{F} .
- Aut (\mathcal{F}, F_i) : the subgroup of Aut \mathcal{F} fixing F_i set-wise.
- Factor-transitive: Aut $\mathcal F$ acts transitively on the partition $\mathcal F$.
- Vertex-transitive: factor-transitive and $\text{Aut}(\mathcal{F}, F_i)$ is transitive on V .
- Edge-transitive: factor-transitive and $\mathsf{Aut}(\mathcal{F}, F_i)$ is transitive on F_i .
- Homogeneous: $\bigcap_{i=1}^s \text{Aut}(\mathcal{F}, F_i)$ is transitive on V, called an $HF(n, k, s)$.
- \bullet Symmetric: vertex-transitive $+$ edge-transitive, called an $\mathsf{SF}(n, k, s)$.

Transitive factorizations

• Let $\mathcal{F} = \{F_1, F_2, \cdots, F_s\}$ be an $F(n, k, s)$ on V.

- Aut F: the subgroup of Sym(V) preserving partition \mathcal{F} .
- Aut (\mathcal{F}, F_i) : the subgroup of Aut \mathcal{F} fixing F_i set-wise.
- Factor-transitive: Aut $\mathcal F$ acts transitively on the partition $\mathcal F$.
- Vertex-transitive: factor-transitive and $\text{Aut}(\mathcal{F}, F_i)$ is transitive on V .
- Edge-transitive: factor-transitive and $\text{Aut}(\mathcal{F}, F_i)$ is transitive on F_i .
- Homogeneous: $\bigcap_{i=1}^s \text{Aut}(\mathcal{F}, F_i)$ is transitive on V, called an $HF(n, k, s)$.
- \bullet Symmetric: vertex-transitive $+$ edge-transitive, called an $\mathsf{SF}(n, k, s)$.
- Edge-transitive homogeneous factorizations i.e. $\mathsf{SHF}(n, k, s)$

 $(1 + 4)$

Known results

- ¹ Cameron and Korchmaros (1993): One-factorizations of complete graphs with a doubly transitive automorphism group.
- ² Li and Praeger (2003): HF for complete graphs.
- \odot Sibley (2004): SF for complete graph with Aut F is not affine permutation group but acts 2-transitive on V .
- ⁴ Li, Lim and Praeger (2009): HF of complete graphs with all factors admitting a common edge-transitive group.

Known results

- ¹ Cameron and Korchmaros (1993): One-factorizations of complete graphs with a doubly transitive automorphism group.
- ² Li and Praeger (2003): HF for complete graphs.
- \odot Sibley (2004): SF for complete graph with Aut F is not affine permutation group but acts 2-transitive on V .
- ⁴ Li, Lim and Praeger (2009): HF of complete graphs with all factors admitting a common edge-transitive group.

Remark 1.3 (Chen and Lu)

SF for complete graph with $\text{Aut}\mathcal{F}$ an affine 2-homogeneous permutation group is SHF.

 $(1 - 1)$ $(1 - 1)$ $(1 - 1)$ $(1 - 1)$ $(1 - 1)$ $(1 - 1)$ $(1 - 1)$ $(1 - 1)$

The aims

Classify edge-transitive homogeneous factorizations of complete k-hypergraphs, where $k \geq 3$.

The aims

- Classify edge-transitive homogeneous factorizations of complete k-hypergraphs, where $k \geq 3$.
- \bullet Classify symmetric factorizations of complete k-hypergraphs, where $k \geq 3$.

 $(1 - 4)$ and $(1 - 4)$

Outline

1 [Edge-transitive factorizations of complete uniform hypergraphs](#page-2-0) • [Definitions and background](#page-3-0)

[Edge-transitive homogeneous factorizations of](#page-25-0) \mathcal{K}_n^k

[Symmetric factorizations of](#page-39-0) \mathcal{K}_n^k

[Cayley hypergraph](#page-46-0)

- [Definitions and background](#page-47-0)
- [Normality of Cayley hypergraphs](#page-58-0)
- CHI[-property of Cayley hypergraphs](#page-61-0)

 $\mathsf{SHF}(n,k,s)$

If
$$
F(n, k, s) = \{F_1, F_2, \cdots, F_s\}
$$
 is SHF or SF

重

 \overline{AB} \rightarrow \overline{AB} \rightarrow \overline{AB} \rightarrow \overline{AB} \rightarrow \overline{AB} \rightarrow

 $SHF(n, k, s)$

If $F(n, k, s) = \{F_1, F_2, \cdots, F_s\}$ is SHF or SF

⇓

 $(1 + 4)$

 $SHF(n, k, s)$

If
$$
F(n, k, s) = \{F_1, F_2, \dots, F_s\}
$$
 is SHF or SF

$$
\Downarrow
$$

• Aut $\mathcal F$ is a k-homogeneous permutation groups on V

 $SHF(n, k, s)$

.

If
$$
F(n, k, s) = \{F_1, F_2, \dots, F_s\}
$$
 is SHF or SF

$$
\Downarrow
$$

- Aut $\mathcal F$ is a k-homogeneous permutation groups on V
- \bullet F(n, k, s) is the immprimitive block systems of Aut F acting on $V^{\{k\}}$

 $(1 + 4)$

Construction of SHF

 \bullet G k-homogeneous permutation group on V

Construction of SHF

- \bullet G k-homogeneous permutation group on V
- \bullet *M* minimal normal subgroup of *G*

Construction of SHF

- \bullet G k-homogeneous permutation group on V
- \bullet *M* minimal normal subgroup of *G*

$$
\bullet \ v \in e \in V^{\{k\}} \ ; \ G = MG_v
$$

Construction of SHF

- \bullet G k-homogeneous permutation group on V
- \bullet M minimal normal subgroup of G
- $v \in e \in V^{\{k\}}$; $G = MG_v$
- take a subgroup H of G such that $G_e \leq MH \leq G$

Construction of SHF

- \bullet G k-homogeneous permutation group on V
- \bullet M minimal normal subgroup of G
- $v \in e \in V^{\{k\}}$; $G = MG_v$
- take a subgroup H of G such that $G_e \leq MH \leq G$
- $E = e^{MH}$ consists of $|MH : (MG_e)|$ orbits of M on $V^{\{k\}}$

Construction of SHF

- \bullet G k-homogeneous permutation group on V
- \bullet M minimal normal subgroup of G

$$
\bullet \ v \in e \in V^{\{k\}} \ ; \ G = MG_v
$$

- take a subgroup H of G such that $G_e \leq MH \leq G$
- $E = e^{MH}$ consists of $|MH : (MG_e)|$ orbits of M on $V^{\{k\}}$
- $\mathcal{F} := \{ E^g \mid g \in G \}$ edge-transitive homogeneous (k, s) -factorizations on V , where $s = |G : (MH)|$

Theorem 1.4 (Chen and Lu,2018)

There exists an SHF(n, k, s) for $n \geq 2k \geq 6$ and $s \geq 2 \Leftrightarrow (n, k, s)$ is one of $(32,3,5)$, $(32,3,31)$, $(33,4,5)$, $(2^d,3,\frac{(2^d-1)(2^{d-1}-1)}{3})$ $\frac{2}{3}$ and $(q+1, 3, 2)$, where $d > 3$ and q a prime power with $q \equiv 1 \pmod{4}$. In particular, there is no SHF 1-factorization of index $s \geq 2$ and order $n \geq 6$.

 4 ロ } 4 \overline{P} } 4 \overline{E} } 4 \overline{E} }

Remark

A k-hypergraph on *n* vertices is *t*-subset regular if there is a constant $\lambda > 1$ such that each *t*-subset of *V* is contained in exactly λ edges. Note that each *t*-subset regular *k*-hypergraph is a $t - (v, k, \lambda)$ design. The factors of F in Theorem [1.4](#page-36-0) are t-subset regular k-hypergraph with t and λ listed in Table [1](#page-37-0)

Table: The parameters t and λ .

 \Rightarrow

Remark

A large set of $t-(v, k, \lambda)$ designs of size N, denoted by $LS[N](t, k, n)$, is a partition of $V^{\{k\}}$ (|V| = n)into block sets of N disjoint t – (v, k, λ) designs. Clearly, each $\mathcal F$ in Theorem [1.4](#page-36-0) is an $LS[N](t, k, n)$ in which all designs are flag-transitive and admit a common pointtransitive group, where N, k, t and n are listed in Table [1.](#page-37-0)

Outline

1 [Edge-transitive factorizations of complete uniform hypergraphs](#page-2-0)

- [Definitions and background](#page-3-0)
- [Edge-transitive homogeneous factorizations of](#page-25-0) \mathcal{K}_n^k

[Symmetric factorizations of](#page-39-0) \mathcal{K}_n^k

[Cayley hypergraph](#page-46-0)

- [Definitions and background](#page-47-0)
- [Normality of Cayley hypergraphs](#page-58-0)
- CHI[-property of Cayley hypergraphs](#page-61-0)

 $(1 - 4)$ $(1 -$

 $\mathsf{SF}(n, k, s)$

Clearly, SHF is SF. Then we want to classify all the $\mathsf{SF}(n, k, s)$ with $k \geq 3$. By the way, we obtain all the symmetrical 1factorizations with $k \geq 3$.

Construction of SF

\bullet G k-homogeneous permutation group on V

Construction of SF

- \bullet G k-homogeneous permutation group on V
- Take a transitive subgroup X of G

Construction of SF

- \bullet G k-homogeneous permutation group on V
- Take a transitive subgroup X of G

•
$$
\mathsf{Soc}(G) \nleq X \leq G
$$

•
$$
X_e = G_e
$$
 for some $e \in V^{\{k\}}$

 \bullet X is not k-homogeneous permutation group on V

K ロ ▶ | K 御 ▶ | K 重 ▶ | K 重 ▶ | 「重 】

Construction of SF

- \bullet G k-homogeneous permutation group on V
- Take a transitive subgroup X of G

•
$$
\mathsf{Soc}(G) \nleqslant X \leq G
$$

•
$$
X_e = G_e
$$
 for some $e \in V^{\{k\}}$

 \bullet X is not k-homogeneous permutation group on V

•
$$
\mathcal{F} := \{ \{ e^{Xg} \} \mid g \in G \}
$$

symmetric (k, s) -factorizations on V, where $s = |G : X|$

Theorem 1.5 (Chen and Lu, 2017)

For $6 \leq 2k \leq n$, there is a symmetric 1-factorization \Leftrightarrow either $n = 2k$ or $(n, k) \in \{(q + 1, 3), (24, 4)\}$, q is a prime power with $11 \leq q \equiv 2 \pmod{3}$.

Theorem 1.6 (Chen and Lu, 2017)

Let F be an $SF(n, k, s)$ with $n \geq 2k \geq 6$ and $s \geq 2$. Then

- \bullet F is homogeneous; or
- ² F is a 1-factorization; or
- \bullet $(n, k, s) \in \{(8, 3, 7), (12, 3, 11), (20, 3, 57), (12, 5, 66)\}\$

 \Rightarrow

 4 O \rightarrow 4 \overline{P} \rightarrow 4 \overline{E} \rightarrow 4 \overline{E} \rightarrow

[On Edge-transitive Factorizations of Complete Uniform Hypergraphs](#page-0-0) [Cayley hypergraph](#page-46-0)

Outline

• [Definitions and background](#page-3-0)

[Edge-transitive homogeneous factorizations of](#page-25-0) \mathcal{K}_n^k

[Symmetric factorizations of](#page-39-0) \mathcal{K}_n^k

2 [Cayley hypergraph](#page-46-0)

- [Definitions and background](#page-47-0)
- [Normality of Cayley hypergraphs](#page-58-0)
- CHI[-property of Cayley hypergraphs](#page-61-0)

İ,

[On Edge-transitive Factorizations of Complete Uniform Hypergraphs](#page-0-0) [Cayley hypergraph](#page-46-0) [Definitions and background](#page-47-0)

Outline

• [Definitions and background](#page-3-0)

[Edge-transitive homogeneous factorizations of](#page-25-0) \mathcal{K}_n^k

[Symmetric factorizations of](#page-39-0) \mathcal{K}_n^k

2 [Cayley hypergraph](#page-46-0) [Definitions and background](#page-47-0)

• [Normality of Cayley hypergraphs](#page-58-0)

• CHI[-property of Cayley hypergraphs](#page-61-0)

İ,

[On Edge-transitive Factorizations of Complete Uniform Hypergraphs](#page-0-0)

[Cayley hypergraph](#page-46-0)

[Definitions and background](#page-47-0)

Definition 2.1

Given a finite group G and a symmetric connector set $S \subset G \backslash e$, the Cayley graph, denoted $\textsf{Cay}(G, S)$, is the graph with $V = G$ and $E = \{(x, y) \in V \times V \mid yx^{-1} \in S\}$ (i.e $y = sx$ for some $s \in S$.)

 \Rightarrow

 4 ロ) 4 6) 4 \pm) 4 \pm)

[On Edge-transitive Factorizations of Complete Uniform Hypergraphs](#page-0-0)

[Cayley hypergraph](#page-46-0)

[Definitions and background](#page-47-0)

Definition 2.1

Given a finite group G and a symmetric connector set $S \subset G \backslash e$, the Cayley graph, denoted $\text{Cay}(G, S)$, is the graph with $V = G$ and $E = \{(x, y) \in V \times V \mid yx^{-1} \in S\}$ (i.e $y = sx$ for some $s \in S$.)

Definition 2.2 (M. Buratti, 1994)

Let G be a finite group, Ω a subset of $G \setminus e$ and t an integer satisfying $2 \le t \le max\{o(\omega) \mid \omega \in \Omega\}$; the t-Cayley hypergraph $\mathcal{H} = t - \mathsf{Cay}(G, \Omega)$ of G over Ω is defined by:

 $\bullet \; V(\mathcal{H}) := G$:

 $E(\mathcal{H}) := \{ \{g, \omega g, \cdots, \omega^{t-1} g\} \mid g \in G, \omega \in \Omega \}.$

 \equiv

[On Edge-transitive Factorizations of Complete Uniform Hypergraphs](#page-0-0) [Cayley hypergraph](#page-46-0) [Definitions and background](#page-47-0)

Definition 2.3 (J. Lee and Y. S. Kwon, 2013)

Let G be a finite group and let S be a set of subsets $S_1, S_2, S_3, \cdots, S_k$ of $G \setminus \{e\}$. A Cayley hypergraph $CH(G, \mathcal{S})$ is defined by:

• $V(CH) = G;$

•
$$
E(\mathsf{CH}) = \{g, S_i g | g \in G, S_i \in \mathcal{S}\}.
$$

[On Edge-transitive Factorizations of Complete Uniform Hypergraphs](#page-0-0) [Cayley hypergraph](#page-46-0) [Definitions and background](#page-47-0)

Definition 2.3 (J. Lee and Y. S. Kwon, 2013)

Let G be a finite group and let S be a set of subsets $S_1, S_2, S_3, \cdots, S_k$ of $G \setminus \{e\}$. A Cayley hypergraph $CH(G, \mathcal{S})$ is defined by:

$$
\bullet \ \ V(\mathsf{CH}) = G;
$$

$$
\bullet \ E(\mathsf{CH}) = \{g, S_i g | g \in G, S_i \in \mathcal{S}\}.
$$

• A Cayley hypergraph $CH(G, S)$ is said to be a normal Cayley hypergraph if $R(G) \triangleleft Aut(CH(G, S))$. (M. Alaeiyan, 2007).

Definition 2.3 (J. Lee and Y. S. Kwon, 2013)

Let G be a finite group and let S be a set of subsets $S_1, S_2, S_3, \cdots, S_k$ of $G \setminus \{e\}$. A Cayley hypergraph $CH(G, \mathcal{S})$ is defined by:

$$
\bullet \ \ V(\mathsf{CH}) = G;
$$

•
$$
E(\mathsf{CH}) = \{g, S_i g | g \in G, S_i \in \mathcal{S}\}.
$$

- A Cayley hypergraph $CH(G, S)$ is said to be a normal Cayley hypergraph if $R(G) \trianglelefteq$ Aut(CH((G, S)). (M. Alaeiyan, 2007)
- A Cayley hypergraph $CH(G, S)$ is called a CHI-hypergraph of G, if whenever $CH(G, \mathcal{S}) \cong CH(G, \mathcal{T})$, there is an element $\sigma \in \text{Aut}(G)$ such that $\mathcal{S}^{\sigma} = \mathcal{T}$, and \mathcal{S} is called a CHI-subset.

[On Edge-transitive Factorizations of Complete Uniform Hypergraphs](#page-0-0) [Cayley hypergraph](#page-46-0) [Definitions and background](#page-47-0)

Some known results about the automorphism group of transitive hypergraph:

Some known results about the automorphism group of transitive hypergraph:

• Lee and Kwon (2013) A connected hypergraph is a Cayley hypergraph if and only if its automorphism group contains a regular subgroup

イロト イ部 トイモト イモト 一番

Some known results about the automorphism group of transitive hypergraph:

- Lee and Kwon (2013) A connected hypergraph is a Cayley hypergraph if and only if its automorphism group contains a regular subgroup
- Babai and Cameron (2015) Except for the alternating groups and finitely many others, every primitive permutation group is the full automorphism group of an edge-transitive hypergraph

Some known results about the automorphism group of transitive hypergraph:

- Lee and Kwon (2013) A connected hypergraph is a Cayley hypergraph if and only if its automorphism group contains a regular subgroup
- Babai and Cameron (2015) Except for the alternating groups and finitely many others, every primitive permutation group is the full automorphism group of an edge-transitive hypergraph
- Spiga (2016) Obtain the explicit list of finite primitive groups which are not automorphism groups of edge-transitive hypergraphs

[On Edge-transitive Factorizations of Complete Uniform Hypergraphs](#page-0-0)

[Cayley hypergraph](#page-46-0)

[Definitions and background](#page-47-0)

Theorem 2.1 (Chen and Lu)

Let $\mathcal{H} = \text{CH}(G, \mathcal{S})$ be a Cayley hypergraph. Then H is connected if and only if $\cup_{i=1}^k S_i$ generate G where $S = \{S_1, S_2, \cdots, S_k\}.$

Theorem 2.2 (Chen and Lu)

Let $CH(G, \mathcal{S})$ be a Cayley hypergraph. Then the degree of this hypergraph is $d_{CH} \leq k + |S_1| + |S_2| + |S_3| + \cdots + |S_k|$.

Outline

• [Definitions and background](#page-3-0)

- [Edge-transitive homogeneous factorizations of](#page-25-0) \mathcal{K}_n^k
- [Symmetric factorizations of](#page-39-0) \mathcal{K}_n^k

2 [Cayley hypergraph](#page-46-0) • [Definitions and background](#page-47-0)

- [Normality of Cayley hypergraphs](#page-58-0)
- CHI[-property of Cayley hypergraphs](#page-61-0)

ä,

Theorem 2.3 (Chen and Lu)

Let $S_i \neq \{1, S_x \setminus s_{xy}\}^{R(a)\sigma}$ for any $a \in G$, $\sigma \in$ Aut (G) where $x \in \{1, 2, 3, \dots, k\}$ and $s_{xy} \in S_x$. Then the Cayley hypergraph $CH(G, S)$ is normal if and only if $A_1 \subset Aut(G)$.

 4 O \rightarrow 4 \overline{P} \rightarrow 4 \overline{E} \rightarrow 4 \overline{E} \rightarrow

Theorem 2.3 (Chen and Lu)

Let $S_i \neq \{1, S_x \setminus s_{xy}\}^{R(a)\sigma}$ for any $a \in G$, $\sigma \in$ Aut (G) where $x \in \{1, 2, 3, \dots, k\}$ and $s_{xy} \in S_x$. Then the Cayley hypergraph $CH(G, S)$ is normal if and only if $A_1 \subset Aut(G)$.

Theorem 2.4 (Chen and Lu)

Let H be a vertex-transitive hypergraph whose automorphism group $\text{Aut}(\mathcal{H})$ is abelian. Then $\text{Aut}(\mathcal{H})$ acts regularly on the vertex set of H and H is a Cayley hypergraph $CH(G, S)$. Moreover if $S^{-1} = S$, then Aut(CH(G, S)) $\cong \mathbb{Z}_2^k$ for some integer k.

 4 O \rightarrow 4 \overline{P} \rightarrow 4 \overline{E} \rightarrow 4 \overline{E} \rightarrow

Outline

• [Definitions and background](#page-3-0)

- [Edge-transitive homogeneous factorizations of](#page-25-0) \mathcal{K}_n^k
- [Symmetric factorizations of](#page-39-0) \mathcal{K}_n^k

2 [Cayley hypergraph](#page-46-0)

- [Definitions and background](#page-47-0)
- [Normality of Cayley hypergraphs](#page-58-0)
- CHI[-property of Cayley hypergraphs](#page-61-0)

ä,

Theorem 2.5 (Chen and Lu)

Let $X := \text{CH}(G, \mathcal{S})$ and $A := \text{Aut}(X)$. Then S is a CHI-subset of G if and only if for any $\sigma \in \text{Sym}(G)$ whenever $\sigma R(G) \sigma^{-1} \leq A$ there is an element $a \in A$ such that $aR(G)a^{-1} = \sigma R(G)\sigma^{-1}$.

 \Rightarrow

Theorem 2.5 (Chen and Lu)

Let $X := CH(G, S)$ and $A := Aut(X)$. Then S is a CHI-subset of G if and only if for any $\sigma \in \text{Sym}(G)$ whenever $\sigma R(G) \sigma^{-1} \leq A$ there is an element $a \in A$ such that $aR(G)a^{-1} = \sigma R(G)\sigma^{-1}$.

Theorem 2.6 (Chen and Lu)

Let G be a finite p-group for some prime p. If $X = \text{CH}(G, S)$ with $S = \{S_1, S_2, S_3, \cdots, S_k\}$ and $\Sigma_{i=1}^k |S_i| + k < p$, then X is a CHI-hypergraph.

ALL AND ABANEL IS

References

- H L. Babai and P. J. Cameron, Most primitive groups are full automorphism groups of edge-transitive hypergraphs, J. Algebra, 421(2015), 512-523.
- E. Z. Baranyai, On the factorization of the complete uniform hypergraph. In *infinite and finite sets* (Colloq., Keszthely, 1973), Vol. I, pp. 91-108. Colloq. Math. Soc. János Bolyai, Vol. 10. North-Holland, Amsterdam, 1975.
- 譶 M. Buratti, Cayley, Marty and Schreier hypergraphs, Abh. Math. Sem. Univ. Hamburg, 64(1994), 151-162.
- **P. J. Cameron and G. Korchmáros, One-factorization of com**plete graphs with a doubly transitive automorphism group, Bull. London Math. Soc., 25(1993), 1-6.

References

- H H. Y. Chen and Z. P. Lu, Edge-transitive homogeneous factorizations of complete uniform hypergraphs, J. Graph The $ory, 87(3)(2018), 305-316.$
- H. Y. Chen and Z. P. Lu, Symmetric factorizations of complete uniform hypergraph, J. Algebraic Combin., 46(2017), 475-497.
- F.
	- J. Lee and Y. S. Kwon, Cayley hypergraphs and Cayley hypermaps, Discrete Math., 313(4)(2013), 540-549.
-

C. H. Li, T. K. Lim and C. E. Praeger, Homogeneous factorisations of complete graphs with edge-transitive factors, J. Algebraic Combin., 29(2009), 107-132.

 \equiv

 $(1 - 4)$

References

- C. H. Li and C. E. Praeger, On partitioning the orbitals of a transitive permutation group, Trans. Amer. Math. Soc., 355(2003), 637-653.
- T. Q. Sibley, On classifying finite edge colored graphs with two transitive automorphism groups. J. Combin. Theory Ser. B, 90(2004), 121-138.
- P. Spiga, Finite primitive groups and edge-transitive hypergraphs, J. Algebraic Combin., 43(2016), 715-734.

[On Edge-transitive Factorizations of Complete Uniform Hypergraphs](#page-0-0)

[Cayley hypergraph](#page-46-0)

CHI[-property of Cayley hypergraphs](#page-61-0)

Thank you for your attention!

É

K ロ ▶ | K 御 ▶ | K 聖 ▶ | K 聖 ▶ |