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Introduction (Warming Up)

We put distinct four points x1, x2, x3, x4 on the Euclidean space R2.

Clearly, 1 ≤ |{d(xi , xj) | 1 ≤ i < j ≤ 4}| ≤
(4
2

)
= 6.

But, the first equality does not hold.

Q1. Can we put x1, x2, x3, x4 on R2 such that

2 = |{d(xi , xj) | 1 ≤ i < j ≤ 4}|?

Q2. What else?

Q3. Can we find all of them up to similarity?

Q4. Can we put x1, x2, x3, x4 on R3 such that

1 = |{d(xi , xj) | 1 ≤ i < j ≤ 4}|?

Q5. Can we put x1, x2, x3, x4, x5 on R2 such that

2 = |{d(xi , xj) | 1 ≤ i < j ≤ 4}|?
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Distance Sets

A subset X of a Euclidean space is called an s-distance set if |A(X )| = s

where A(X ) = {d(x , y) | x , y ∈ X , x 6= y}.

Problem

Given s, d , n, find all X ⊆ Rd such that |A(X )| = s and |X | = n up to

similarity.

D.G.Larman, C.Rogers, J.J.Seidel

On two-distance sets in Euclidean space, Bull. London Math. Soc. 9

(1977), no. 3, 261-267.

E.Bannai, Et.Bannai, D.Stanton

An upper bound for the cardinality of an s-distance subset in real

Euclidean space II, Combinatorica 3 (1983), no. 2, 147-152.

If X ⊆ Rd and |A(X )| = s, then |X | ≤
(d+s

s

)
.
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Not only distances but also triangles

Isometry

Let (X , d) be a metric space where d : X ×X → R≥0 is a metric function.

For A,B ⊆ X we say that A is isometric to B if there exists a bijection

f : A→ B such that d(x , y) = d(f (x), f (y)) for all x , y ∈ A.

For a positive integer k we denote the family of k-subsets of X by
(X
k

)
,

and we define Ak(X ) to be the quotient set of
(X
k

)
by isometry, i..e,

Ak(X ) =

{
[Y ] | Y ∈

(
X

k

)}
where [Y ] = {Z ⊆ X | Z is isometric to Y }.
Notation

A2(X ) are identified with {d(x , y) | x , y ∈ X , x 6= y}.
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Isometric Sequence

If X is a finite set, then we define the isometric sequence of (X , d) to be

(a1, a2, . . . , an) where ai = |Ai (X )| and |X | = n.

In Euclidean spaces

(1) The four vertices in a square has the isometric sequence (1, 2, 1, 1).

(2) The five vertices in a regular pentagon: (1, 2, 2, 1, 1).

(3) The four vertices in a non-square rectangle: (1, 3, 1, 1).

A connected graph is a metric space with the graph distance.

(4) The complete bipartite graph K3,3 : (1, 2, 2, 2, 1, 1).

(5) The cycle C6 : (1, 3, 3, 3, 1, 1).

(6) The cocktail party graph K2,2,2: (1, 2, 2, 2, 1, 1).

Isometric sequences are obtained from

the partition {Eα}α∈A2(X ) of
(X
2

)
where Eα = {{x , y} | d(x , y) = α}.

(7) The discrete partition of
(X
2

)
: (1,

(n
2

)
,
(n
3

)
, . . . , 1)
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What we can see from a given isometric sequence

From (1, 2, 1, 1) we can see the following:

(1) |X | = 4 since the length of the sequence is four.

(2) All 3-subsets are isometric.

(3) {x , y , z} is not a regular triangle but an isosceles triangle since a2 = 2.

(4) If d(x , y) = d(y , z) 6= d(x , z) and w /∈ {x , y , z}, then

d(x ,w) = d(w , z) and d(y , z) = d(x , z).

(5) Thus, the partition of
({x ,y ,z,w}

2

)
is uniquely determined up to

permutations of X .
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How to embed into a Euclidean space

Distance matrix

The matrix
∑

α∈A2(X ) α
2Aα is called the distance matrix of (X , d) where

Aα is the adjacency matrix of the graph (X ,Eα).

On embeddings into Euclidean spaces we have the following criterion:

A.Neumaier

Distance matrices, dimension, and conference graphs, Nederl. Akad.

Wetensch. Indag. Math. 43 (1981), no. 4, 385-391.

Setting G := −(I − 1
nJ)(

∑
α∈A2(X ) α

2Aα)(I − 1
nJ),

if G is positive semidefinite,

then there exists an isometry from X to Rd where d = rank(G ).
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Example with (1, 2, 1, 1)

The following is the distance matrix D where a = d(x , z)2 and

b = d(x , y)2:

D =


0 a b b

a 0 b b

b b 0 a

b b a 0

 , det(tI − G ) = t(t − a)2(t − 2b + a)

We have a ≤ 2b iff G is positive semi-definite, and

the equality holds iff X is embedded into R2.

In general, we are required to find A2(X ) such that G is positive

semidefinite and rank(G ) is minimal.

8 / 23



Trivial or Non-Trivial?

(1) ak = 1 implies that all k-subsets of X are isometric.

Clearly, a1 = an = 1 where n = |X |, and

if
⋂
α Aut(X ,Eα) is transitive on X , then an−1 = 1.

Do you think whether it is trivial that ak = 1 implies a2 = 1?

(2) ak = 2 implies that exactly two isometry classes exists in
(X
k

)
.

Any graph and its complement induce a metric space with a2 = 2, and

every complete bipartite graph with at least five vertices induces a metric

space with a2 = a3 = 2.

Is it trivial to characterize all metric spaces with a4 = 2?

(3) A non-square rectangle has the isometric sequence (1, 3, 1, 1).

Is it trivial that a2 ≤ a3 if n ≥ 5?

(4) The orbitals of C2 o (C2 o C2) on eight points satisfies a2 = a3 = 3.

Is it trivial to classify all metric spaces with a2 = a3 = 3? 9 / 23



In our main theorem we deal with the following isometric sequences

(a1, a2, . . . , an):

1 ak = 1 for some k with 2 ≤ k ≤ n − 2;

2 ak = 2 for some k with 4 ≤ k ≤ −3+
√
1+4n

2 ;

3 a3 = 2 and n ≥ 5;

4 a2 = a3 = 3 and n ≥ 5.

10 / 23



Theorem 1 (H, Shinohara)

Let (X , d) be a finite metric space with its isometric sequence

(a1, a2, . . . , an). If ak = 1 for some k with 2 ≤ k ≤ n − 2, then

a1 = a2 = · · · = an = 1.

Theorem 2 (H, Shinohara)

Let (X , d) be a finite metric space with its isometric sequence

(a1, a2, . . . , an). If ak = 2 for some k with 4 ≤ k ≤ −3+
√
1+4n

2 , then

a2 = 2, and for some α ∈ A2(X ) the graph (X ,Eα) is isomorphic to

K1,n−1 or Kn \ K2.

Theorem 3 (H, Shinohara)

Let (X , d) be a finite metric space with its isometric sequence

(a1, a2, . . . , an). If a3 = 2 and n ≥ 5, then a2 = 2 and for some α ∈ A2(X )

(X ,Eα) is isomorphic to a matching on X , a complete bipartite graph or

the pentagon.
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Theorem 4 (H, Shinohara)

Let (X , d) be a finite metric space with its isometric sequence

(a1, a2, . . . , an). If a2 = a3 = 3 and n ≥ 5, then (X , {Eδ}δ∈A2(X )) is

isomorphic to one of the following:

Example 1

Let {Y ,Z} be the bipartition of K4,4, and denote K4,4 by (X ,Eα). Let Eγ
denote a complete matching on X which does not intersect with Eα, and

Eβ denote the complement of Eα ∪ Eγ . For each subset Y of X , if

|Y | ≥ 5, then A3(Y ) = {ααβ, ααγ, ββγ}.

Example 2

Let {Y ,Z} be a bipartition of X . We define Eα =
(Y
2

)
∪
(Z
2

)
, Eγ to be a

matching between Y and Z and Eβ to be the complement of Eα ∪ Eβ.

Then A3(X ) = {ααα, αβγ, ββα}.
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Example 3

Let (X ,Eβ) and (X ,Eγ) be matchings on X such that (X ,Eβ ∪ Eγ) is also

a matching on X , and Eα the complement of Eβ ∪ Eγ . Then

A3(X ) = {ααα, ααβ, ααγ}.

Example 4

Let {Y ,Z} be a bipartition of X with |Z | = 2. We define Eα =
(Y
2

)
,

Eγ =
(Z
2

)
and Eβ to be the complement of Eα ∪ Eγ . Then

A3(X ) = {ααα, ββα, ββγ}.
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Before going to prove

Let (X , d) be a finite metric space. For A,B ⊆ X we define a vector

v(A,B) whose entries are indexed by the elements of A2(X ) as follows:

v(A,B)α := |(A× B) ∩ Rα|

where Rα := {(x , y) ∈ X × X | d(x , y) = α}.

Lemma 1

(i) v(A,B) = v(B,A);

(ii) If A ∩ B = ∅, then v(A ∪ B,C ) = v(A,C ) + v(B,C );

(iii) v(X ,X )α = |Rα| = 2|Eα|;
(iv) If A is isometric to B, then v(A,A) = v(B,B);

(v) |{v(A,A) | A ∈
(X
k

)
}| ≤ ak ;

(vi) For B ∈
( X
k−1
)

we have |{v(x ,B) | x ∈ X \ B}| ≤ ak ,
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α-star vs β-star

Lemma 2

For distinct α, β ∈ A2(X ) and A,B ∈
(X
k

)
, if the induced subgraph of

(X ,Eα) by A contains a spanning star and that of (X ,Eβ) by B contains a

spanning star, then A is not isometric to B.

For a positive integer k we define

Mk := {α ∈ A2(X ) | ∃x ∈ X ; v(x ,X )α ≥ k},
so that Mk ⊆ Mk−1 for each k .

Lemma 3

Let α ∈ A2(X ) \Mk−1 and A ∈
(X
k

)
such that the induced subgraph of

(X ,Eα) by A contains a spanning forest. If k2 − k ≤ n, then the number

of edges in the forest is at most ak − 1.
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Proof of Theorem 1

Theorem 1 If ak = 1 for some k with 2 ≤ k ≤ n − 2, then a2 = 1.

Suppose a2 > 1, i.e., ∃x , y , z ∈ X ; d(x , y) 6= d(y , z);

Set α := d(x , y) and β := d(y , z);

Let w ∈ X \ {x , y , z} and S ∈
( X
k−2
)

with x , y , z ,w /∈ S ;

Set S1 := S ∪ {x , y}, S2 := S ∪ {x , z}, S3 := S ∪ {y , z},
S4 := S ∪ {w , z}, so that ∀i ,Si ∈

(X
k

)
;

For u ∈ {x , y , z ,w} we set r(u) := v(u, S)α.

Applying Lemma 1 for v(Si ,Si ) we obtain

r(x) + r(y) + 1 = r(x) + r(w) + v(x ,w)α,

r(y) + r(z) = r(z) + r(w) + v(w , z)α,

and hence, 1 ≤ 1 + v(z ,w)α = v(x ,w)α ≤ 1.

This implies that d(x ,w) = α.

Similarly, we have d(y ,w) = β.

Since S1 is not isometric to S3, we have a contradiction to ak = 1.
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Sketch of the Proof of Theorem 2

Theorem 2 If ak = 2 for some k with 4 ≤ k ≤ −3+
√
1+4n

2 , then a2 = 2,

and for some α ∈ A2(X ) the graph (X ,Eα) is isomorphic to K1,n−1 or

Kn \ K2.

|A2(X ) \Mk−1| ≤ 1 by Lemma 3;

If A2(X ) \Mk−1 = {β}, then |Eβ| = 1 by Lemma 3;

By Lemma 2, |Mk−1| ≤ ak = 2, so a2 = 2;

For α ∈ Mk−1 we have (X , α) ' Kn \ K2.

If A2(X ) \Mk−1 = ∅, then M2 = A2(X );

By Lemma 2, |Mk−1| ≤ ak = 2, so A2(X ) = {α, β};
We may assume α ∈ Mk+1 since (k − 1) + k + 1 ≤ n;

∃x ∈ X ; |R(x)| ≥ k + 1;

For all A,B ∈
(
R(x)
k−1

)
, A ∪ {x} is isometric to B ∪ {x};

It means that A is isometric to B since each permutation of A ∪ {x}
which fixes the vertices of degree less than k − 1 is an isometry.
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Continued to the previous slide

By Lemma 2, |Mk−1| ≤ ak = 2, so A2(X ) = {α, β};
We may assume α ∈ Mk+1 since (k − 1) + k + 1 ≤ n;

∃x ∈ X ; |R(x)| ≥ k + 1;

For all A,B ∈
(R(x)
k−1
)
, A ∪ {x} is isometric to B ∪ {x};

It means that A is isometric to B since each permutation of A ∪ {x}
which fixes the vertices of degree less than k − 1 is an isometry;

By Theorem 1, |A2(R(x))| = 1, so A2(R(x)) = {α} or {β};
We rename β ∈ A2(X ) so that (X ,Eβ) contains a clique of size k + 1;

Let Y be a clique of maximal size in (X ,Eβ);

Then (y , z) ∈ Rα for each z ∈ X \ Y , and each y ∈ Y .

By Lemma 1, |X \ Y | = 1, and hence (X ,Eα) ' K1,n−1.
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Outline of Poof of Theorem 3

Theorem 3 If a3 = 2 and n ≥ 5, then a2 = 2 and for some α ∈ A2(X )

(X ,Eα) is isomorphic to a matching on X , a complete bipartite graph or

the pentagon.

a2 ≤ a3 = 2 by observation for the adjacency of five points;

A2(X ) = {α, β};
We have to choose two of {ααα, βββ, ααβ, ββα} to form A3(X );

If (X ,Eα) and (X ,Eβ) is triangle-free, then n ≤ 5 since the Ramsey

number R(3, 3) = 6. In this case (X ,Eα) is the pentagon.

Suppose (X ,Eα) contains a triangle, so that ααα ∈ A2(X );

The number of connected components of (X ,Eα) is at most two,

otherwise βββ, ββα ∈ A3(X ), a contradiction;

If it is two, then each connected component of (X ,Eα) is a clique, so

that (X ,Eβ) is complete bipartite;

If it is one, then ααβ ∈ A3(X ) since (X ,Eα) is not complete;

This implies that (X ,Eβ) is a matching on X .
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Ideas to prove Theorem 4

Theorem If a2 = a3 = 3 and n ≥ 5, then (X , {Eδ}δ∈A2(X )) is isomorphic

to one of the following:

Suppose A3(X ) = {α, β, γ};
A3(X ) ⊆ {ααα, βββ, γγγ, ααβ, ββγ, γγα, ααγ, γγβ, ββα, αβγ};
Suppose each of (X ,Eα), (X ,Eβ), (X ,Eγ) is triangle-free.

If (X ,Eα) has a vertex of degree at least three, then

A3(X ) = {ααβ, ααγ, ββγ} for a suitable ordering of β and γ.

If each of the three graph has no vertex of degree at least three, then

n − 1 ≤ 2 + 2 + 2, and we can prove that such case does not occur by

hand.

We may assume that ααα ∈ A3(X );

We claim that (X ,Eβ) or (X ,Eγ) is a matching on X ;
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Continued to the previous slide

We claim that (X ,Eβ) or (X ,Eγ) is a matching on X ;

Otherwise, ββδ, γγε ∈ A3(X ) for some δ ∈ {α, γ} and ε ∈ {α, β};
This implies that (X ,Eα) is a disjoint union of cliques;

Then ββα ∈ A3(X ) or γγα ∈ A3(X );

We may assume ββα ∈ A3(X ).

(X ,Eα ∪ Eβ) is a disjoint union of cliques;

This implies γγα, γγβ ∈ A3(X ), a contradiction.

We claim that, if each of (X ,Eβ) and (X ,Eγ) is a matching, then

A3(X ) = {αα, ααβ, ααγ} for a suitable ordering of β and γ.;

We claim that, if (X ,Eγ) is a matching but not so (X ,Eβ), then

A3(X ) = {ααα, ββα, αβγ} A3(X ) = {ααα, ββα, ββγ};
There are more cases to check than before. But, the used method is

similar.
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Continued to the previous slide

By the claims, for a suitable ordering of α, β, γ, A3(X ) is one of the

following:

{ααβ, ααγ, ββγ};
{ααα, αβγ, ββα};
{ααα, ααβ, ααγ};
{ααα, ββγ, ββα};
A3(X ) would give enough information to determine the structure of

(X , {Eα,Eβ,Eγ}).
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Thank you for your attention.

23 / 23


