Structure and Automorphism group of Involution G-Graphs and Cayley graphs

Farzaneh Gholaminezhad

University of Kashan, Kashan-Iran Joint work with Ali Reza Ashrafi and
Alain Bretto, University of Caen-France

August 2016, Novosibirsk, Russia

G-graph

Let G be a finite group and $S=\left\{s_{1}, s_{2}, \cdots, s_{k}\right\}$ a nonempty set of elements of $G, k \geq 1$. A pair (G, S) is called a S-group and G is a S-group if $G=\langle S\rangle$.

G-graph

Let G be a finite group and $S=\left\{s_{1}, s_{2}, \cdots, s_{k}\right\}$ a nonempty set of elements of $G, k \geq 1$. A pair (G, S) is called a S-group and G is a S-group if $G=\langle S\rangle$.
$\forall s \in S, G=\sqcup_{x \in T_{s}}\langle s\rangle x$, where T_{s} is a write transversal of $\langle s\rangle$ Let $g_{s}: G \rightarrow G, g_{s}(x)=s x$ of S_{G} and for $x \in G$, let us consider the cycles:

$$
(\mathbf{s}) \mathbf{x}=\left(\mathbf{x}, \mathbf{s x}, \mathbf{s}^{2} \mathbf{x}, \cdots, \mathbf{s}^{\mathbf{o (s})-1} \mathbf{x}\right)
$$

G-graph [Bretto (2005)]

- $V(\Phi(G, S))=$ The distinct cycles in the decomposition of $g_{s}, s \in S$, i.e., $V=\sqcup_{s \in S} V_{s}$ with $V_{s}=\left\{(s) x, x \in T_{s}\right\}$.

G-graph [Bretto (2005)]

- $V(\Phi(G, S))=$ The distinct cycles in the decomposition of $g_{s}, s \in S$, i.e., $V=\sqcup_{s \in S} V_{s}$ with $V_{s}=\left\{(s) x, x \in T_{s}\right\}$.
- For each (s)x, $(t) y \in V$, if $|\langle s\rangle x \cap\langle t\rangle y|=d, d \geq 1$ then $\{(s) x,(t) y\}$ is a d-edge.

G-graph properties

$\Phi(G, S)$ is $|S|=k$-partite graph and every vertex has $o(s)$-loops. It has no multi edges iff for all $s, t \in S,\langle s\rangle \cap\langle t\rangle=\{1\}$. $\tilde{\Phi}(G, S)$: The G-graph without loops.

G-graph properties

$\Phi(G, S)$ is $|S|=k$-partite graph and every vertex has $o(s)$-loops. It has no multi edges iff for all $s, t \in S,\langle s\rangle \cap\langle t\rangle=\{1\}$. $\tilde{\Phi}(G, S)$: The G-graph without loops. $\widehat{\Phi}(G, S)$: The simple form of G-graph.

G-graph properties

$\Phi(G, S)$ is $|S|=k$-partite graph and every vertex has $o(s)$-loops. It has no multi edges iff for all $s, t \in S,\langle s\rangle \cap\langle t\rangle=\{1\}$. $\tilde{\Phi}(G, S)$: The G-graph without loops. $\widehat{\Phi}(G, S)$: The simple form of G-graph.
$\tilde{\Phi}(G, S)$ is connected $\Leftrightarrow G=\langle S\rangle$.

Examples

Many common graphs are G-graphs:

- $K_{m, n}=\tilde{\Phi}\left(\mathbb{Z}_{m} \times \mathbb{Z}_{n},\{(1,0),(0,1)\}\right)$

Examples

Many common graphs are G-graphs:

- $K_{m, n}=\tilde{\Phi}\left(\mathbb{Z}_{m} \times \mathbb{Z}_{n},\{(1,0),(0,1)\}\right)$
- Cycles of even length $C_{n}=\tilde{\Phi}\left(D_{2 n},\{s, t\}\right)$, ($D_{2 n}=\left\langle a, b \mid a^{n}=b^{2}=1, b^{-1} a b=a^{-1}\right\rangle$ and s, t are involutions.)

Examples

Many common graphs are G-graphs:

- $K_{m, n}=\tilde{\Phi}\left(\mathbb{Z}_{m} \times \mathbb{Z}_{n},\{(1,0),(0,1)\}\right)$
- Cycles of even length $C_{n}=\tilde{\Phi}\left(D_{2 n},\{s, t\}\right)$,
($D_{2 n}=\left\langle a, b \mid a^{n}=b^{2}=1, b^{-1} a b=a^{-1}\right\rangle$ and s, t are involutions.)
- $K_{2, n}=\tilde{\Phi}\left(D_{2 n},\{a, b\}\right)$,
- The octahedral graph $=\tilde{\Phi}\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2},\{(1,0),(0,1),(1,1)\}\right)$

- The octahedral graph $=\tilde{\Phi}\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2},\{(1,0),(0,1),(1,1)\}\right)$

- The cuboctahedral graph
$=\tilde{\Phi}\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2},\{(1,0,0),(0,1,0),(0,0,1)\}\right)$

The hypercube graph Q_{n} is an n-regular graph with $|V|=2^{n}$ and $|E|=2^{n-1} n$. The vertices are all n-dimensional vectors on $\{0,1\}$. Two vectors are adjacent iff they differ in a single element.

- $Q_{3}=\tilde{\Phi}\left(A_{4},\{(1,2,3),(1,3,4)\}\right)$

The hypercube graph Q_{n} is an n-regular graph with $|V|=2^{n}$ and $|E|=2^{n-1} n$. The vertices are all n-dimensional vectors on $\{0,1\}$. Two vectors are adjacent iff they differ in a single element.

- $Q_{3}=\tilde{\Phi}\left(A_{4},\{(1,2,3),(1,3,4)\}\right)$
- $Q_{4}=\tilde{\Phi}(G=\operatorname{SmallGroup}(32,6),\{f 1, f 1 * f 2\})$, $G=\left(\left(C_{4} \times C_{2}\right): C_{2}\right): C_{2}$

Möbius ladder

The Möbius ladder $M_{n}=$ A cubic circulant graph with an even n of vertices.

Möbius ladder

The Möbius ladder $M_{n}=$ A cubic circulant graph with an even n of vertices.

Möbius ladder

The Möbius ladder $M_{n}=$ A cubic circulant graph with an even n of vertices.

M_{n} is a bipartite G-graph $\tilde{\Phi}(G, S)$ iff $G=\langle S\rangle, S=\{s, t\}$ such that $o(s)=o(t)=3$ and $|E|=|G| \equiv \pm 1(\bmod 4)$.

Möbius ladder

The Möbius ladder $M_{n}=$ A cubic circulant graph with an even n of vertices.

M_{n} is a bipartite G-graph $\tilde{\Phi}(G, S)$ iff $G=\langle S\rangle, S=\{s, t\}$ such that $o(s)=o(t)=3$ and $|E|=|G| \equiv \pm 1(\bmod 4)$.
M_{50}
gap> G:=SmallGroup(75,2);
<pc group of size 72 with 5 generators>
gap> S:=FindGenerators(G,[3,3]);
[f1, f1*f2]
gap> graph:=GGraph(G,S);

G-graph morphism

For a given G-graph $\widetilde{\Phi}=\tilde{\Phi}(G, \underset{\sim}{S})=(V, E)$ and any $g \in G$, we associate the map $\delta: G \rightarrow \operatorname{Aut}(\widetilde{\Phi}), \delta(g)=\left(\delta_{g^{-1}}, \bar{\delta}_{g^{-1}}\right)$

G-graph morphism

For a given G-graph $\widetilde{\Phi}=\tilde{\Phi}(G, \underset{\sim}{S})=(V, E)$ and any $g \in G$, we associate the map $\delta: G \rightarrow \operatorname{Aut}(\Phi), \delta(g)=\left(\delta_{g^{-1}}, \bar{\delta}_{g^{-1}}\right)$

- $\delta_{g^{-1}}: V \rightarrow V$,
$\delta_{g^{-1}}((s) x)=(s) x g^{-1}$

G-graph morphism

For a given G-graph $\widetilde{\Phi}=\tilde{\Phi}(G, \underset{\sim}{S})=(V, E)$ and any $g \in G$, we associate the map $\delta: G \rightarrow \operatorname{Aut}(\widetilde{\Phi}), \delta(g)=\left(\delta_{g^{-1}}, \bar{\delta}_{g^{-1}}\right)$

- $\delta_{g^{-1}}: V \rightarrow V$,
$\delta_{g^{-1}}((s) x)=(s) x g^{-1}$
- $\bar{\delta}_{g^{-1}}: E \rightarrow E$,

$$
\bar{\delta}_{g^{-1}}([(s) x,(t) y], u)=\left(\left[(s) x g^{-1},(t) y g^{-1}\right], u g^{-1}\right)
$$

$\delta(G)$ acts transitively on every $V_{s}, s \in S$ and all $(s) x, x \in T_{s}$ are of the same order. .

G-graph and Cayley graph

Bretto et.,al. 2008
Let $G=\langle S\rangle$ and $\tilde{\Phi}=\tilde{\Phi}(G, S)$:

1) If $S=\{\alpha, \beta\}$ and $A=(\langle\alpha\rangle \cup\langle\beta\rangle) \backslash\{1\}$, Then $L(\tilde{\Phi}) \simeq \operatorname{Cay}(G, A)$.

G-graph and Cayley graph

Bretto et.,al. 2008
Let $G=\langle S\rangle$ and $\tilde{\Phi}=\tilde{\Phi}(G, S)$:

1) If $S=\{\alpha, \beta\}$ and $A=(\langle\alpha\rangle \cup\langle\beta\rangle) \backslash\{1\}$, Then $L(\tilde{\Phi}) \simeq \operatorname{Cay}(G, A)$.
2) If $\forall s \in S, o(s)=m>0$ and if
i) $\exists A \leq A u t_{S}(G)$ which acts regularly on S,
ii) $\exists B \leq G$ of size $|B|=\frac{|G|}{m}$ such that $\forall f \in A, f(B)=B$ and $B \cap\langle s\rangle=\{1\}$, for all $s \in S$.
Then $H=\delta(B) \rtimes A \leq \operatorname{Aut}(\tilde{\Phi})$ acts regularly on $V(\tilde{\Phi})$ and so $\tilde{\Phi} \cong \operatorname{Cay}(H, T)$, for $T \subseteq H$.

$$
\begin{aligned}
D_{2 n} & =\left\langle a, b \mid a^{n}=b^{2}=1, b^{-1} a b=a^{-1}\right\rangle, \\
V_{8 n} & =\left\langle a, b \mid a^{2 n}=b^{4}=1, a b a=b^{-1}, a b^{-1} a=b\right\rangle, \\
S D_{8 n} & =\left\langle a, b \mid a^{4 n}=b^{2}=1, b a b=a^{2 n-1}\right\rangle, \\
T_{4 n} & =\left\langle a, b \mid a^{2 n}=1, a^{n}=b^{2}, b^{-1} a b=a^{-1}\right\rangle, \\
U_{2 n m} & =\left\langle a, b \mid a^{2 n}=b^{m}=1, a b a^{-1}=b^{-1}\right\rangle .
\end{aligned}
$$

$$
\begin{aligned}
D_{2 n} & =\left\langle a, b \mid a^{n}=b^{2}=1, b^{-1} a b=a^{-1}\right\rangle, \\
V_{8 n} & =\left\langle a, b \mid a^{2 n}=b^{4}=1, a b a=b^{-1}, a b^{-1} a=b\right\rangle, \\
S D_{8 n} & =\left\langle a, b \mid a^{4 n}=b^{2}=1, b a b=a^{2 n-1}\right\rangle, \\
T_{4 n} & =\left\langle a, b \mid a^{2 n}=1, a^{n}=b^{2}, b^{-1} a b=a^{-1}\right\rangle, \\
U_{2 n m} & =\left\langle a, b \mid a^{2 n}=b^{m}=1, a b a^{-1}=b^{-1}\right\rangle .
\end{aligned}
$$

$$
\begin{gathered}
\widetilde{\Phi}\left(D_{2 n},\{a, b\}\right) \cong K_{2, n}, \quad \widetilde{\Phi}\left(U_{6 n},\{a, b\}\right) \cong K_{3,2 n} \\
\widetilde{\Phi}\left(V_{8 n},\{a, b\}\right) \cong K_{4,2 n}, \quad \widetilde{\Phi}\left(S D_{8 n},\{a, b\}\right) \cong K_{2,4 n} \\
\widehat{\Phi}\left(T_{4 n},\{a, b\}\right) \cong K_{2, n}
\end{gathered}
$$

Table : $G=A_{n}, S=\{a, b\}, \widehat{\Phi}=\widehat{\Phi}\left(A_{n}, S\right)$ and $\Gamma=\operatorname{Cay}\left(A_{n}, S\right)$ for $n=4,5,6,7,8$

G	A_{4}	A_{5}	A_{6}	A_{7}	A_{8}
$\operatorname{Aut}(G)$	S_{4}	S_{5}	$\left(A_{6}: \mathbb{Z}_{2}\right): \mathbb{Z}_{2}$	S_{7}	S_{8}
$\operatorname{Aut}(\widehat{\Phi})$	$\mathbb{Z}_{2} \times S_{4}$	$\mathbb{Z}_{2} \times A_{5}$	$\mathbb{Z}_{2} \times A_{6}$	S_{7}	S_{8}
$\operatorname{Aut}(\Gamma)$	$\mathbb{Z}_{2} \times S_{4}$	$\mathbb{Z}_{2} \times A_{5}$	$\mathbb{Z}_{2} \times A_{6}$	S_{7}	S_{8}

Table : $G=A_{n}, S=\{a, b\}, \widehat{\Phi}=\widehat{\Phi}\left(A_{n}, S\right)$ and $\Gamma=\operatorname{Cay}\left(A_{n}, S\right)$ for $n=4,5,6,7,8$

G	A_{4}	A_{5}	A_{6}	A_{7}	A_{8}
$\operatorname{Aut}(G)$	S_{4}	S_{5}	$\left(A_{6}: \mathbb{Z}_{2}\right): \mathbb{Z}_{2}$	S_{7}	S_{8}
$\operatorname{Aut}(\widehat{\Phi})$	$\mathbb{Z}_{2} \times S_{4}$	$\mathbb{Z}_{2} \times A_{5}$	$\mathbb{Z}_{2} \times A_{6}$	S_{7}	S_{8}
$\operatorname{Aut}(\Gamma)$	$\mathbb{Z}_{2} \times S_{4}$	$\mathbb{Z}_{2} \times A_{5}$	$\mathbb{Z}_{2} \times A_{6}$	S_{7}	S_{8}

Conjecture
For $n \geq 7$,

$$
\operatorname{Aut}\left(A_{n}\right) \cong \operatorname{Aut}\left(\widehat{\Phi}\left(A_{n}, S\right)\right) \cong \operatorname{Aut}\left(\operatorname{Cay}\left(A_{n}, S\right)\right)
$$

Table : $G=L_{2}(p), A=\operatorname{Aut}(\widehat{\Phi}(G, S=\{a, b\}))$ for $p=2,3,5,7,11,13,17,19,23$

G	$L_{2}(2)$	$L_{2}(3)$	$L_{2}(5)$	$L_{2}(7)$	$L_{2}(11)$
A	D_{12}	S_{4}	$\mathbb{Z}_{2} \times A_{5}$	$L_{2}(7): \mathbb{Z}_{2}$	$L_{2}(11): \mathbb{Z}_{2}$
G	$L_{2}(13)$	$L_{2}(17)$	$L_{2}(19)$	$L_{2}(23)$	
A	$L_{2}(13) \times \mathbb{Z}_{2}$	$L_{2}(17) \times \mathbb{Z}_{2}$	$L_{2}(19): \mathbb{Z}_{2}$	$L_{2}(23): \mathbb{Z}_{2}$	

For $p \in\{3,11,19,23,27,31\}, \operatorname{Aut}(\widehat{\Phi}(G, S)) \cong \operatorname{Aut}(G)$,

Table : $G=L_{2}(p), A=\operatorname{Aut}(\widehat{\Phi}(G, S=\{a, b\}))$ for $p=2,3,5,7,11,13,17,19,23$

G	$L_{2}(2)$	$L_{2}(3)$	$L_{2}(5)$	$L_{2}(7)$	$L_{2}(11)$
A	D_{12}	S_{4}	$\mathbb{Z}_{2} \times A_{5}$	$L_{2}(7): \mathbb{Z}_{2}$	$L_{2}(11): \mathbb{Z}_{2}$
G	$L_{2}(13)$	$L_{2}(17)$	$L_{2}(19)$	$L_{2}(23)$	
A	$L_{2}(13) \times \mathbb{Z}_{2}$	$L_{2}(17) \times \mathbb{Z}_{2}$	$L_{2}(19): \mathbb{Z}_{2}$	$L_{2}(23): \mathbb{Z}_{2}$	

For $p \in\{3,11,19,23,27,31\}, \operatorname{Aut}(\widehat{\Phi}(G, S)) \cong \operatorname{Aut}(G)$,
For $p \in\{5,7,13,17,29,37\}, \operatorname{Aut}(\widehat{\Phi}(G, S)) \cong \mathbb{Z}_{2} \times G$

Table : $G=L_{2}(p), A=\operatorname{Aut}(\widehat{\Phi}(G, S=\{a, b\}))$ for $p=2,3,5,7,11,13,17,19,23$

G	$L_{2}(2)$	$L_{2}(3)$	$L_{2}(5)$	$L_{2}(7)$	$L_{2}(11)$
A	D_{12}	S_{4}	$\mathbb{Z}_{2} \times A_{5}$	$L_{2}(7): \mathbb{Z}_{2}$	$L_{2}(11): \mathbb{Z}_{2}$
G	$L_{2}(13)$	$L_{2}(17)$	$L_{2}(19)$	$L_{2}(23)$	
A	$L_{2}(13) \times \mathbb{Z}_{2}$	$L_{2}(17) \times \mathbb{Z}_{2}$	$L_{2}(19): \mathbb{Z}_{2}$	$L_{2}(23): \mathbb{Z}_{2}$	

For $p \in\{3,11,19,23,27,31\}, \operatorname{Aut}(\widehat{\Phi}(G, S)) \cong \operatorname{Aut}(G)$,
For $p \in\{5,7,13,17,29,37\}, \operatorname{Aut}(\widehat{\Phi}(G, S)) \cong \mathbb{Z}_{2} \times G$
For $p=7, \operatorname{Aut}(\widehat{\Phi}(G, S)) \cong \mathbb{Z}_{2} \times \operatorname{Aut}(G)$ and $\widehat{\Phi}\left(L_{2}(7), S\right)$ is a 3 -regular connected G-graph.

$G-\operatorname{graph} \widehat{\Phi}\left(L_{2}(p),\{a, b\}\right)$

Proposition

Let $p \geq 3$ be a prime number and $G=L_{2}(p)=\langle a, b\rangle$ (standard generators). $\Phi(G,\{a, b\})$ is a bipartite, semi-regular connected graph with two parts V_{a} and V_{b}.
Each vertex of V_{a} and V_{b} is of degree 3 and $\frac{p-1}{2}$, respectively.

$$
G=L_{2}(p), \widehat{\Phi}=\widehat{\Phi}(G, \operatorname{In} v), \Gamma=\operatorname{Cay}(G, \operatorname{Inv}), \text { where } p=2,3,5,7
$$

G	$L_{2}(2)$	$L_{2}(3)$	$L_{2}(5)$
〈Inv>	S_{3}	$\mathbb{Z}_{2} \times \mathbb{Z}_{2}$	A_{5}
Aut(G)	S_{3}	S_{4}	S_{5}
Aut (\$)	$S_{3} \backslash \mathbb{Z}_{2}$	$\left.\left.\left.\left(\left(() A_{4}, \mathbb{Z}_{2}\right) \times A_{4}\right): \mathbb{Z}_{2}\right): \mathbb{Z}_{3}\right): \mathbb{Z}_{2}\right): \mathbb{Z}_{2}$	$\left(A_{5} \backslash \mathbb{Z}_{2}\right): \mathbb{Z}_{2}$
Aut(Г)	$S_{3} \backslash \mathbb{Z}_{2}$		$\left(A_{5} \backslash \mathbb{Z}_{2}\right): \mathbb{Z}_{2}$
G	$L_{2}(7)$	$L_{2}(11)$	
〈Inv>	L2(7)	$L_{2}(11)$	
Aut(G)	$L_{2}(7): \mathbb{Z}_{2}$	$L_{2}(11): \mathbb{Z}_{2}$	
Aut ($\widehat{\Phi}$)	$\left(L_{2}(7) \backslash \mathbb{Z}_{2}\right): \mathbb{Z}_{2}$	$\left(L_{2}(11) \backslash \mathbb{Z}_{2}\right): \mathbb{Z}_{2}$	
Aut(Г)	$\left(L_{2}(7)<\mathbb{Z}_{2}\right): \mathbb{Z}_{2}$	$\left(L_{2}(11) \backslash \mathbb{Z}_{2}\right): \mathbb{Z}_{2}$	

$\widehat{\Phi}\left(A_{5},\{(1,2,3,4,5),(3,4,5)\}\right)$

$\operatorname{Cay}\left(D_{12}, I n v\right)$

Let (G, S) be an S-group such that all elements of S are of the same order.
For any $f \in \operatorname{Aut}(G)$, since f preserves the order of each element $s \in S$, then we can see that $f(S)=S$ and $f \in \operatorname{Aut}_{S}(G)$.
Since $G \leq \operatorname{Aut}(G)$ and every $s \in S$ has the same order, then $\operatorname{Aut}(G)=\operatorname{Aut}_{S}(G)$ and since $\operatorname{Aut}_{S}(G) \leq \operatorname{Aut}(\widehat{\Phi}(G, S))$ then

$$
G \leq \operatorname{Aut}(\widehat{\Phi}(G, S))
$$

Theorem
Let G be a finite simple group then
$G \cong \operatorname{Aut}(\widetilde{\Phi}(G, \operatorname{lnv}))$
G is an sporadic group with $\operatorname{Out}(G)=1$.

Theorem
Let G be a finite simple group then
$G \cong \operatorname{Aut}(\widetilde{\Phi}(G, \operatorname{Inv})) \Longleftrightarrow$
G is an sporadic group with $\operatorname{Out}(G)=1$.

Proof.
Suppose $G \cong \operatorname{Aut}(\widetilde{\Phi}(G, \operatorname{Inv}))$. Since $\frac{G}{Z(G)} \cong \operatorname{Inn}(G)$ and G is simple, then $G \cong \operatorname{Inn}(G)$. Also $\operatorname{Inn}(G) \leqslant \operatorname{Aut}(G) \leqslant \operatorname{Aut}(\widetilde{\Phi})$ implies that

$$
G \cong \operatorname{Inn}(G) \cong \operatorname{Aut}(G) \cong \operatorname{Aut}(\widetilde{\Phi}(G, \operatorname{Inv}))
$$

and $\operatorname{Out}(G) \cong \frac{\operatorname{Aut}(G)}{\ln (G)}=1$. This satisfies for the sporadic group G with $\operatorname{Out}(G)=1$. The converse is obviously true .

Lemma

1. For any non-empty simple connected graph Γ, Aut $(\Gamma) \cong \operatorname{Aut}(L(\Gamma))$, except K_{2}, K_{4} and the followings graphs, which non of them are Cayley graphs.

Lemma

1. For any non-empty simple connected graph Γ, Aut $(\Gamma) \cong \operatorname{Aut}(L(\Gamma))$, except K_{2}, K_{4} and the followings graphs, which non of them are Cayley graphs.

Lemma
2. Let (G, Inv) be an Inv-group with $|\operatorname{Inv}| \geq 2$. Then

$$
L(\operatorname{Cay}(G, \operatorname{Inv})) \cong \widetilde{\Phi}(G, \operatorname{Inv})
$$

Theorem
Let (G,Inv) be an Inv-group with $|\operatorname{Inv}| \geq 2$. Then

$$
\operatorname{Aut}(\operatorname{Cay}(G, \operatorname{Inv})) \cong \operatorname{Aut}(\widetilde{\Phi}(G, \operatorname{In} v)) .
$$

Theorem
Let (G,Inv) be an Inv-group with $|\operatorname{Inv}| \geq 2$. Then

$$
\operatorname{Aut}(\operatorname{Cay}(G, \operatorname{Inv})) \cong \operatorname{Aut}(\widetilde{\Phi}(G, \operatorname{Inv})) .
$$

Proof.

It is the result of Lemma 1 and Lemma 2.

Theorem
Let (G,Inv) be an Inv-group with $|\operatorname{Inv}| \geq 2$. Then

$$
\operatorname{Aut}(\operatorname{Cay}(G, \operatorname{Inv})) \cong \operatorname{Aut}(\widetilde{\Phi}(G, \operatorname{Inv})) .
$$

Proof.

It is the result of Lemma 1 and Lemma 2.
Lemma
For a finite group G, if $|\operatorname{lnv}|=1$ then

$$
\begin{gathered}
\left.\operatorname{Aut}(\operatorname{Cay}(G, \operatorname{Inv})) \cong \mathbb{Z}_{2}\right\} S_{\frac{|G|}{2}}, \\
\operatorname{Aut}(\widehat{\Phi}(G, \operatorname{Inv})) \cong \operatorname{Aut}\left(\overline{K_{|G|}}\right) \cong S_{|G|}
\end{gathered}
$$

Lemma

i) $G=T_{4 n}$,

$$
\operatorname{Aut}(G) \cong \mathbb{Z}_{2 n} \rtimes \mathbb{Z}^{1}{ }_{2 n}
$$

of order $2 n \phi(2 n)$, where $\mathbb{Z}^{1} 2 n$ is the group of units of $\mathbb{Z}_{2 n}$.

Lemma

i) $G=T_{4 n}$,

$$
\operatorname{Aut}(G) \cong \mathbb{Z}_{2 n} \rtimes \mathbb{Z}^{1} 2 n
$$

of order $2 n \phi(2 n)$, where $\mathbb{Z}^{1}{ }_{2 n}$ is the group of units of $\mathbb{Z}_{2 n}$.
ii) $G=V_{8 n}$ and $n>1$, then $\operatorname{Aut}(G)$ is of order $4 n \phi(2 n)$ and for $n=1, G=D_{8}$, then $\operatorname{Aut}(G) \cong D_{8}$.

Lemma

iii) $G=U_{2 n m}$, if $2 \mid m$ or $2 \mid n$, then \mid Aut $\left(U_{2 n m}\right) \mid=m \phi(m) \phi(2 n)$ and $\operatorname{Aut}\left(U_{2 n m}\right)=\left\{f_{i, j, r} \mid f_{i, j, r}(a)=a^{i} b^{j}, f_{i, j, r}(b)=b^{r}\right.$,
$(i, 2 n)=(r, m)=1\}$

$$
=\mathbb{Z}^{*}{ }_{2 n} \times\left(\mathbb{Z}_{m} \rtimes \mathbb{Z}^{*}{ }_{m}\right)
$$

where $\mathbb{Z}^{*}{ }_{2 n}$ is the group of invertible elements of $\mathbb{Z}_{2 n}$.

Lemma

iii) $G=U_{2 n m}$, if $2 \mid m$ or $2 \mid n$, then $\left|\operatorname{Aut}\left(U_{2 n m}\right)\right|=m \phi(m) \phi(2 n)$ and $\operatorname{Aut}\left(U_{2 n m}\right)=\left\{f_{i, j, r} \mid f_{i, j, r}(a)=a^{i} b^{j}, f_{i, j, r}(b)=b^{r}\right.$,
$(i, 2 n)=(r, m)=1\}$

$$
=\mathbb{Z}^{*} 2 n \times\left(\mathbb{Z}_{m} \rtimes \mathbb{Z}_{m}^{*}\right)
$$

where $\mathbb{Z}^{*}{ }_{2 n}$ is the group of invertible elements of $\mathbb{Z}_{2 n}$.
If $2 \nmid m$ and $2 \nmid n$, then $\left|\operatorname{Aut}\left(U_{2 n m}\right)\right|=2 m \phi(m) \phi(2 n)$ and

$$
\operatorname{Aut}\left(U_{2 n m}\right) \cong\left(\mathbb{Z}_{2 n}^{*} \times\left(\mathbb{Z}_{m} \rtimes \mathbb{Z}_{m}^{*}\right)\right) \rtimes \mathbb{Z}_{2}
$$

Theorem

1) $\operatorname{Aut}\left(\operatorname{Cay}\left(T_{4 n}, I n v\right)\right)=\mathbb{Z}_{2}\left\{S_{n}, \quad \operatorname{Aut}\left(\widehat{\Phi}\left(T_{4 n}, \operatorname{Inv}\right)\right) \cong S_{2 n}\right.$.

Theorem

1) $\operatorname{Aut}\left(\operatorname{Cay}\left(T_{4 n}, \operatorname{Inv}\right)\right)=\mathbb{Z}_{2}$ 々 $S_{n}, \quad \operatorname{Aut}\left(\widehat{\Phi}\left(T_{4 n}, \operatorname{Inv}\right)\right) \cong S_{2 n}$.
2) $2 \nmid n, \operatorname{Cay}\left(D_{2 n}, I n v\right) \cong K_{n, n}$,

$$
\operatorname{Aut}\left(\operatorname{Cay}\left(D_{2 n}, \operatorname{Inv}\right)\right) \cong \operatorname{Aut}\left(\widehat{\Phi}\left(D_{2 n}, \operatorname{Inv}\right)\right) \cong S_{n}\left\langle\mathbb{Z}_{2}\right.
$$

Theorem

1) $\operatorname{Aut}\left(\operatorname{Cay}\left(T_{4 n}, \operatorname{Inv}\right)\right)=\mathbb{Z}_{2}$ $S_{n}, \quad \operatorname{Aut}\left(\widehat{\Phi}\left(T_{4 n}, \operatorname{Inv}\right)\right) \cong S_{2 n}$.
2) $2 \nmid n, \operatorname{Cay}\left(D_{2 n}, I n v\right) \cong K_{n, n}$,

$$
\operatorname{Aut}\left(\operatorname{Cay}\left(D_{2 n}, \operatorname{Inv}\right)\right) \cong \operatorname{Aut}\left(\widehat{\Phi}\left(D_{2 n}, \operatorname{Inv}\right)\right) \cong S_{n}\left\langle\mathbb{Z}_{2}\right.
$$

$2 \mid n$, Cay $\left(D_{2 n}, I n v\right)$ is a connected $(n+1)$-regular graph with $2 n$ vertices and $\widehat{\Phi}\left(D_{2 n}, \operatorname{Inv}\right)$ is a connected $(n+1)$-partite graph of size $n(n+1)$.

3) $G=S D_{8 n}, 2 \nmid n$, $\operatorname{Aut}\left(\operatorname{Cay}\left(S D_{8 n}, \operatorname{Inv}\right)\right) \cong \operatorname{Aut}\left(\widehat{\Phi}\left(S D_{8 n}, \operatorname{Inv}\right)\right) \cong\left(D_{8}\right.$ Z $\left.\mathbb{Z}_{2}\right)$ S_{n}
3) $G=S D_{8 n}, 2 \nmid n$,
$\operatorname{Aut}\left(\operatorname{Cay}\left(S D_{8 n}, \operatorname{Inv}\right)\right) \cong \operatorname{Aut}\left(\widehat{\Phi}\left(S D_{8 n}, \operatorname{Inv}\right)\right) \cong\left(D_{8}\right.$ Z $\left.\mathbb{Z}_{2}\right)$ < S_{n}

$$
\operatorname{Inv}=\operatorname{Inv}(G)=\left\{b, a^{2 n} b, a^{2 n}, a^{3 n} b, a^{n} b\right\}
$$

$\langle\operatorname{Inv}\rangle \cong S D_{8}=D_{8}$ and $\operatorname{Cay}\left(D_{8}, I n v\right)$ is a connected, 5 -regular graph with 8 vertices.

$$
\operatorname{Cay}\left(S D_{8 n}, \operatorname{Inv}\right)=n \operatorname{Cay}\left(S D_{8}, \operatorname{Inv}\right)
$$

3) $G=S D_{8 n}, 2 \nmid n$,
$\operatorname{Aut}\left(\operatorname{Cay}\left(S D_{8 n}, \operatorname{Inv}\right)\right) \cong \operatorname{Aut}\left(\widehat{\Phi}\left(S D_{8 n}, \operatorname{Inv}\right)\right) \cong\left(D_{8}\right.$ Z $\left.\mathbb{Z}_{2}\right)$ S_{n}

$$
\operatorname{Inv}=\operatorname{Inv}(G)=\left\{b, a^{2 n} b, a^{2 n}, a^{3 n} b, a^{n} b\right\}
$$

$\langle\operatorname{Inv}\rangle \cong S D_{8}=D_{8}$ and $\operatorname{Cay}\left(D_{8}, \operatorname{Inv}\right)$ is a connected, 5 -regular graph with 8 vertices.

$$
\operatorname{Cay}\left(S D_{8 n}, I n v\right)=n \operatorname{Cay}\left(S D_{8}, I n v\right)
$$

Also $\widehat{\Phi}(G, \operatorname{Inv})$ is a disconnected graph which contains n copies of $\widehat{\Phi}\left(S D_{8}, I n v\right)$ that is a 8 -regular graph with 20 vertices.
$S D_{8 n}, 2 \mid n$,

$\operatorname{Aut}\left(\operatorname{Cay}\left(S D_{8 n}, \operatorname{Inv}\right)\right) \cong \operatorname{Aut}\left(\widehat{\Phi}\left(S D_{8 n}, \operatorname{Inv}\right)\right) \cong S_{4}$ $S_{2 n}$.

$S D_{8 n}, 2 \mid n$,

$$
\begin{gathered}
\operatorname{Aut}\left(\operatorname{Cay}\left(S D_{8 n}, \operatorname{Inv}\right)\right) \cong \operatorname{Aut}\left(\widehat{\Phi}\left(S D_{8 n}, \operatorname{Inv}\right)\right) \cong S_{4} \backslash S_{2 n} . \\
\operatorname{Inv}=\operatorname{Inv}(G)=\left\{b, a^{2 n} b, a^{2 n}\right\}
\end{gathered}
$$

and $\langle I n v\rangle \cong \mathbb{Z}_{4}$. Clearly $\operatorname{Cay}\left(\mathbb{Z}_{4}, \operatorname{Inv}\right) \cong K_{4}$ and $\operatorname{Cay}\left(S D_{8 n}, \operatorname{Inv}\right)=2 n K_{4}$.
$S D_{8 n}, 2 \mid n$,

$$
\begin{gathered}
\operatorname{Aut}\left(\operatorname{Cay}\left(S D_{8 n}, \operatorname{Inv}\right)\right) \cong \operatorname{Aut}\left(\widehat{\Phi}\left(S D_{8 n}, \operatorname{Inv}\right)\right) \cong S_{4} \backslash S_{2 n} . \\
\operatorname{Inv}=\operatorname{Inv}(G)=\left\{b, a^{2 n} b, a^{2 n}\right\}
\end{gathered}
$$

and $\langle I n v\rangle \cong \mathbb{Z}_{4}$. Clearly $\operatorname{Cay}\left(\mathbb{Z}_{4}, \operatorname{Inv}\right) \cong K_{4}$ and
$\operatorname{Cay}\left(S D_{8 n}, \operatorname{Inv}\right)=2 n K_{4}$.
$\widehat{\Phi}\left(S D_{8 n}, I n v\right)=2 n \widehat{\Phi}\left(\mathbb{Z}_{4}, I n v\right)$. and

$$
\begin{gathered}
\operatorname{Aut}\left(\operatorname{Cay}\left(S D_{8 n}, \operatorname{Inv}\right)\right) \cong \operatorname{Aut}\left(\operatorname{Cay}\left(\mathbb{Z}_{4}, \operatorname{Inv}\right)\right) 乙 S_{2 n} \cong \\
\operatorname{Aut}\left(\widehat{\Phi}\left(S D_{8 n}, \operatorname{Inv}\right)\right) \cong \operatorname{Aut}\left(\widehat{\Phi}\left(\mathbb{Z}_{4}, \operatorname{Inv}\right)\right) 乙 S_{2 n} \cong S_{4} \backslash S_{2 n}
\end{gathered}
$$

4) $G=V_{8 n}$
$\operatorname{lnv}\left(V_{8 n}\right)=\left\{a^{i} b, a^{i} b^{-1} \mid 1 \leq i \leq 2 n-1,2 \nmid i\right\} \cup\left\{a^{n}, b^{2}, a^{n} b^{2}\right\}$.
$2 \nmid n, Z\left(V_{8 n}\right)=\left\{1, b^{2}\right\}$ and

$$
\langle\mid n v\rangle \cong\left(\mathbb{Z}_{2 n} \times \mathbb{Z}_{2}\right) \rtimes \mathbb{Z}_{2}
$$

$\langle\operatorname{Inv}\rangle=G$ and $\operatorname{Cay}(G, \operatorname{Inv})$ is a connected $(2 n+3)-$ regular graph.
4) $G=V_{8 n}$
$\operatorname{lnv}\left(V_{8 n}\right)=\left\{a^{i} b, a^{i} b^{-1} \mid 1 \leq i \leq 2 n-1,2 \nmid i\right\} \cup\left\{a^{n}, b^{2}, a^{n} b^{2}\right\}$.
$2 \nmid n, Z\left(V_{8 n}\right)=\left\{1, b^{2}\right\}$ and

$$
\langle I n v\rangle \cong\left(\mathbb{Z}_{2 n} \times \mathbb{Z}_{2}\right) \rtimes \mathbb{Z}_{2}
$$

$\langle\operatorname{Inv}\rangle=G$ and $\operatorname{Cay}(G, \operatorname{Inv})$ is a connected $(2 n+3)-$ regular graph.
$2 \mid n, Z\left(V_{8 n}\right)=\left\{1, a^{n}, b^{2}, a^{n} b^{2}\right\}$,

$$
\begin{aligned}
n=4 k-2 & \Longrightarrow\langle I n v\rangle=\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times D_{n} \\
n=4 k & \Longrightarrow\langle I n v\rangle=\mathbb{Z}_{2} \times D_{2 n}
\end{aligned}
$$

and $\operatorname{Cay}\left(V_{8 n}, I n v\right)$ is a disconnected graph with two isomorphic connected components.
$\widehat{\Phi}\left(V_{8 n}, I n v\right)$
$\widehat{\Phi}=\widehat{\Phi}\left(V_{8 n}, I n v\right)$ is a $4(n+1)$ - regular graph.
$2 \nmid n, \Phi$ is connected but when $2 \mid n$ it has two isomorphic connected components.
5) $G=U_{2 n m}$,
$2 \nmid m, n$:

$$
\operatorname{Aut}\left(\operatorname{Cay}\left(U_{2 n m}, \operatorname{Inv}\right)\right) \cong\left(S_{m} \backslash \mathbb{Z}_{2}\right) \backslash S_{n}
$$

$2 \nmid m$ and $2 \mid n$

$$
\operatorname{Aut}\left(\operatorname{Cay}\left(U_{2 n m}, \operatorname{Inv}\right)\right) \cong \mathbb{Z}_{2} \backslash S_{m n}
$$

5) $G=U_{2 n m}$,
$2 \nmid m, n$:

$$
\operatorname{Aut}\left(\operatorname{Cay}\left(U_{2 n m}, \operatorname{Inv}\right)\right) \cong\left(S_{m} \backslash \mathbb{Z}_{2}\right) \backslash S_{n}
$$

$2 \nmid m$ and $2 \mid n$

$$
\operatorname{Aut}\left(\operatorname{Cay}\left(U_{2 n m}, \operatorname{Inv}\right)\right) \cong \mathbb{Z}_{2} \backslash S_{m n}
$$

$2 \mid m$ and $2 \nmid n$,
$\operatorname{Aut}\left(\operatorname{Cay}\left(U_{2 n m}, \operatorname{Inv}\right)\right)=\operatorname{Aut}\left(\operatorname{Cay}\left(U_{2 m}, \operatorname{Inv}\right)\right) \imath S_{n}$
$2 \mid m, n$,

$$
\operatorname{Aut}\left(\operatorname{Cay}\left(U_{2 n m}, I n v\right)\right) \cong S_{4} \backslash S_{\frac{m n}{2}}
$$

References

(1) A. Bretto and A. Faisant:

A new way for associating a graph to a group Mathematica Slovaca, Vol. 55, Issue 1, 1-8, (2005)

埥 A. Bretto, A. Faisant, L. Gillibert:
G graphs: a new representation of groups, Journal of Symbolic Computation, Vol. 42, Issue 5, 549-560, (2007)
(A. Bretto and L. Gillibert,
G-graphs: An efficient tool for constructing symmetric and semisymmetric graphs,
Discrete Applied Mathematics, Vol. 156, 2719-2739, (2008)

目 N．Biggs，
Algebraic Graph Theory
Cambridge Tracts in Mathematics，Vol．67，Cambridge University Press．（1974）

E A．Cayley，
On the theory of groups， American Journal Mathematics Vol． 11 139－157，（1889）．
圊 The GAP Team，
GAP，Groups，Algorithms and Programming， Lehrstuhl De fur Mathematik，RWTH，Aachen， 1992.

圊 G．James and M．Liebeck， Representations and Characters of Groups， Cambridge Univ．Press，London－New York， 1993.

Thank you!

Ferdossi

Persepolis

Historical house, Kashan

Prof. Dr. Maryam Mirzakhani winner of fields medal

Tajrish St．，Tehran

Eram Garden, Shiraz

Persian Golf

