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Overview

Vertex-transitive graphs from pairs of groups

Determining the full automorphism group

Symmetry through odd automorphisms (STOA): Core
research problem

Cubic symmetric graphs
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Vertex-transitive graphs

An automorphism of a graph X = (V ,E ) is an isomorphism
of X with itself. Thus each automorphism α of X is a
permutation of the vertex set V which preserves adjacency.

A graph X is vertex-transitive if its automorphism group
Aut(X ) acts transitively on vertices.
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Vertex-transitive graphs - alternative (constructive)
definition

Let (G ,H) be a pair of abstract groups such that H ≤ G ,

G/H ... the set of left cosets of G with respect to H.

G acts on G/H by left multiplication as a transitive
permutation group.

This action induces an action of G on G/H × G/H; the
corresponding orbits are called orbitals.

Define a graph with vertex set G/H and the edge set
E = Clo(O), where O is a union of orbitals and Clo(O) a
symmetric closure of O, that is, if (x , y) ∈ O then both (x , y)
and (y , x) are in Clo(O).

This graph is vertex-transitive, and every vertex-transitive
graph can be obtained in this way.

Dragan Marušič University of Primorska, Slovenia



Example - the cube Q3

G = S4
H = 〈(1 2 3)〉 ∼= Z3

V = S4/Z3

E = O, where O is the orbital containing the pair (H, (1 4)H).

H

(14)H

(1234)H

(1324)H (143)H

(142)H

(12)
H

(14)(23)H
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The cube Q3 - Alternatively

The cube can also be obtained from pair G = Z3
2 and H = 1.

In general, we say that a vertex-transitive graph X = Cay(G ,S) is
a Cayley graph if it can be obtained from a pair (G , 1) where
S = S−1 ⊆ G \ {1} denotes the set of neighbors of 1 in X .

Q3 = Cay(Z3
2, {100, 010, 001})
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The full automorphism group of a vertex-transitive graph

If X is a vertex-transitive graph arising from a pair (G ,H) then
G ≤ Aut(X ).

What is Aut(X ), i.e. when is G = Aut(X )?

Back to the cube Q3:

Clearly, Z3
2 ≤ Aut(Q3) and S4 ≤ Aut(Q3).

Is G = S4 the full automorphism group of the cube?

Aut(Q3) ∼= S4 × Z2.
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ECOVTG – Even-closedness of vertex-transitive graphs

A crucial question in algebraic graph theory and beyond:

Given a graph, are there any symmetries beyond the obvious ones,
and, if yes, how can one determine the full set?

We approach this question by building on the duality of even/odd
permutations associated with graphs.
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Even/odd automorphisms

An automorphism of a graph is said to be even/odd if it acts on
the set of vertices as an even/odd permutation.
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The Petersen graph
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The Petersen graph

Obvious automorphisms:

rotation

reflection

Semi-obvious automorphism:

swap (inner/outer 5-cycle)

There exist additional automorphisms (mixers), disrespecting inner
and outer cycles.
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The Petersen graph

Aut(X ) ∼= S5
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ECOVTG – Even-closedness of vertex-transitive graphs

The full automorphism group of the Petersen graph contains
involutions with three orbits of size 2 and four fixed vertices, and
hence odd (as permutations) automorphisms.
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The cube Q3

All automorphisms of the cube are even.
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ECOVTG – Even-closedness of vertex-transitive graphs

2-closure H(2) of H = intersection of automorphism groups of all
basic orbital graphs of H (basic = arising from single orbitals)

H is 2-closed if H(2) = H.

Even group = group with only even permutations.
Odd group = group containing also odd permutations.

Question

For H even, can we imbed it into an odd group via basic orbital
graphs?

If H is not 2-closed, is the 2-closure H(2) odd?
If H(2) even, is there at least one basic orbital graph of H
admitting an odd automorphism? If yes H is orbital-odd,
otherwise H is even-closed.
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ECOVTG – Even-closedness of vertex-transitive graphs

Back to the cube and the Petersen graph:

The Petersen graph:
For H = A5 the 2-closure is S5, and is odd.
So H = A5 as a group of degree 10 is orbital-odd.

The cube:
For H ∈ {Z3

2,S4} the 2-closure is S4 × Z2, and is even.
Still, H ∈ {Z3

2, S4} as a group of degree 8 is orbital-odd.

F102 – a cubic symmetric graph of type {41}:
Its automorphism group is isomorphic to PSL(2, 17).
Magma calculations show that PSL(2, 17) as a group of degree
102 is even-closed.
.
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Orbital-odd degrees / VTG with odd automorphisms

For some integers n, all transitive groups of degree n are
orbital-odd.

For example, 2p, where p is a prime, is such an integer.

Dragan Marušič University of Primorska, Slovenia



Odd automorphisms in VT graphs of order 2p, p prime

X VTG of order 2p, G ≤ AutX transitive

G is imprimitive, blocks of size p;

G is imprimitive, blocks of size 2,

G is primitive.
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Odd automorphisms in VT graphs of order 2p, p prime

X VTG of order 2p, G ≤ AutX transitive

G is imprimitive, blocks of size p – a swap exists as an
immediate consequence of existence of two blocks,

G is imprimitive, blocks of size 2 – a swap exists as a
consequence of existence of a smaller H ≤ G with blocks of
size p,

G is primitive – a swap exists as a consequence of the
classification of finite simple groups (CFSG).

All swaps are odd automorphisms!
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G is primitive

Example:
p = 5, A5, S5 acting on pairs from {1, 2, 3, 4, 5}.
Associated graphs: the Petersen graph and its complement.

By CFSG a primitive group of degree 2p, p > 5, is double
transitive, and as such the corresponding orbital graph is the
complete graph K2p.

No CFSG-free proof of this fact exists.

Also, no CFSG-free answer to
the even/odd question for VTG of order 2p exists.
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Cay(D16, {ρ±1, τ}) and Cay(Z16, {±1, 2k})

Two examples of cubic vertex-transitive graphs,
one with and one without odd automorphisms.
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Cayley graphs I

Proposition

A Cayley graph on a group G admits odd automorphisms in the
left regular representation GL of G if and only if Sylow 2-subgroups
of G are cyclic. In particular,

a Cayley graph of order 2 (mod 4) admits odd
automorphisms.
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Cayley graphs II

Proposition

Let X = Cay(G , S) be a Cayley graph on an abelian group G and
let τ ∈ Aut(G ) be such that τ(i) = −i . Then 〈GL, τ〉 ≤ Aut(X ),
and there exists an odd automorphism in 〈GL, τ〉 if and only if one
of the following holds:

|G | ≡ 3 (mod 4),
|G | ≡ 2 (mod 4),
|G | ≡ 0 (mod 4) and a Sylow 2-subgroup of G is cyclic.
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Cubic symmetric graphs

A graph X is called symmetric if its automorphism group acts
transitively on its vertex set as well as its arc set.

arc = directed edge
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Cubic symmetric graphs

A symmetric graph X is said to be s-regular if for any two s-arcs in
X , there is a unique automorphism of X mapping one to the other.

Tutte, 1947

Every finite cubic symmetric graph is s-regular for some s ≤ 5.

The list of all possible pairs of vertex and edge stabilizers in cubic
s-regular graphs:

s Aut(X )v Aut(X )e

1 Z3 id
2 S3 Z2

2 or Z4

3 S3 × Z2 D8

4 S4 D16 or QD16

5 S4 × Z2 (D8 × Z2) o Z2

The vertex stabilizer is of order 3 · 2s−1 in a cubic s-regular graph.
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17 types of cubic symmetric graphs
(Conder, Nedela, 2009)

s Type Bipartite? s Type Bipartite? s Type Bipartite?

1 {1} Sometimes 3 {21, 3} Never 5 {1, 41, 42, 5} Always

2 {1, 21} Sometimes 3 {22, 3} Never 5 {41, 42, 5} Always

2 {21} Sometimes 3 {3} Sometimes 5 {41, 5} Never

2 {22} Sometimes 4 {1, 41} Always 5 {42, 5} Never

3 {1, 21, 22, 3} Always 4 {41} Sometimes 5 {5} Sometimes

3 {21, 22, 3} Always 4 {42} Sometimes

Examples: K4 = {1, 21}, K3,3 = {1, 21, 22, 3}, Q3 = {1, 21}, F010A = {21, 3},
F014A = {1, 41}, F016A = {1, 21}, F018A = {1, 21, 22, 3}, F020A = {1, 21},
F020B = {21, 22, 3}.
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The four smallest cubic symmetric graphs

Odd automorphisms?

YES YESYES NO
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The Heawood graph F014A of type {1, 41}

Odd automorphism? YES
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The Möbius-Kantor graph F016A of type {1, 21}

Odd automorphism? NO
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The Pappus graph F018A of type {1, 21, 22, 3}

Odd automorphism? YES
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Automorphism group of a cubic symmetric graph

The automorphism group of any finite cubic symmetric graph is an
epimorphic image of one of the following seven groups:

G1 = 〈h, a | h3 = a2 = 1〉,
G1
2 = 〈h, a, p | h3 = a2 = p2 = 1, apa = p, php = h−1〉,

G2
2 = 〈h, a, p | h3 = p2 = 1, a2 = p, php = h−1〉,

G3 = 〈h, a, p, q | h3 = a2 = p2 = q2 = 1, apa = q, qp = pq, ph = hp, php = h−1〉,
G1
4 = 〈h, a, p, q, r | h3 = a2 = p2 = q2 = r2 = 1, apa = p, aqa = r , h−1ph = q,

h−1qh = pq, rhr = h−1, pq = qp, pr = rp, rq = pqr〉,
G2
4 = 〈h, a, p, q, r | h3 = p2 = q2 = r2 = 1, a2 = p, a−1qa = r , h−1ph = q,

h−1qh = pq, rhr = h−1, pq = qp, pr = rp, rq = pqr〉,
G5 = 〈h, a, p, q, r , s | h3 = a2 = p2 = q2 = r2 = s2 = 1, apa = q, ara = s, h−1ph = p,

h−1qh = r , h−1rh = pqr , shs = h−1, pq = qp, pr = rp, ps = sp, qr = rq,

qs = sq, sr = pqrs〉.
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Odd automorphisms in cubic symmetric graph

Theorem: Let X be a cubic symmetric graph of order 2n. Then Table

below gives a full information on existence of odd automorphisms in X .

Type Odd automorphisms exist if and only if

{1} n odd

{1, 21} n odd, or n = 2k−1(2t + 1) and X is a (2t+1)-Cayley

graph on a cyclic group of order 2k , where k ≥ 2

{21} n odd and X bipartite

{22} never

{1, 21, 22, 3} n odd

{21, 22, 3} n odd

{21, 3} n odd

{22, 3} n odd
{3} n odd and X bipartite

{1, 41} n odd

{41} n odd and X bipartite

{42} n odd

{1, 41, 42, 5} n odd

{41, 42, 5} n odd

{41, 5} never

{42, 5} never
{5} n odd and X bipartite
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THANK YOU!

HVALA!
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