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Hamming graph

Σ = {0, 1, . . . , q − 1}. Σn – the set of n-words over Σ.

The graph with the vertex set Σn, where two words are adja-
cent iff they differ in only one coordinate, is called the Ham-
ming graph H(n, q). The Hamming graph can be considered
as the Cartesian product of n copies of the complete graph Kq:
H(n, q) = Kq × . . .× Kq.

K4: H(2, 4): H(2, 4) :



Equitable partitions

Let G = (V (G ),E (G )) be a graph.

Definition

A partition (C1, . . . ,Cm) of V (G ) is an equitable partition with quo-
tient matrix S = (Sij)

m
i ,j=1 iff every element of Ci is adjacent with

exactly Sij elements of Cj .

Equitable partitions ∼ regular partitions ∼ partition designs ∼
perfect colorings ∼ . . .



1-Perfect codes

A set C of vertices of a regular graph G = (V ,E ) is called
a 1-perfect code iff every ball of radius 1 contains exactly one
element of C .

In other words, (C ,V ∖C ) is an equitable partition with quotient

matrix

(︂
0 k
1 k−1

)︂
.
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MDS codes

A set C of vertices of H(n, q) is called an MDS code with
distance d if every subgraph isomorphic to H(d−1, q) contains
exactly one element of C .

In other words, C is a distance-d MDS codes iff it has parame-
ters (n, qn−d+1, d)q.

C is a distance-2 MDS code iff (C ,V ∖C ) is an equitable parti-

tion with quotient matrix
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0 n(q−1)
n n(q−2)
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Distance-2 MDS codes: examples

The distance-2 MDS codes are the maximum independent sets in the
Hamming graphs.



Latin (n − 1)-cubes ↔ distance-2 MDS codes of length n

Every coordinate of a distance-2 MDS
code is a function of the other coordi-
nates (latin hypercube).
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Latin hypercubes

Definition

A latin hypercube is an equitable partition of H(n, q) with quotient
matrix nJn − nIn.

n = 2 :

0 1 2 3
1 0 3 2
2 3 1 0
3 2 0 1

n = 3 :



MDS codes

d = 1: the set of all vertices (trivial).

d = 2: latin hypercubes, exist for every n.

q = 2, 3 — only one, up to equivalence
q = 4 — completely characterized [K., Potapov, 2009]

2 < d < n: the length is bounded: n ≤ 2q−2 (MDS conjecture:
n ≤ q + 2, moreover, n ≤ q + 1 for most cases)

Classification up to equivalence, q ≤ 8: [Kokkala, Österg̊ard,
2015] (n = 5, d = 3), [K., Kokkala, Österg̊ard, 2015] (n = 5,
d > 3), [Kokkala, Österg̊ard, 2015+] (d > 3).

d = n, |C | = q; for every n and q there is only one code in this
case, up to isomorphism.

d = n + 1: singleton (trivial).
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2015] (n = 5, d = 3), [K., Kokkala, Österg̊ard, 2015] (n = 5,
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The Doob graphs

D(m, n) = Shm × Kn
4 =

m
×

n

If m > 0 then D(m, n) is a Doob graph.

D(0, n) is the Hamming graph H(n, 4)
(in general, H(n, q) = Kn

q )

D(m, n) is a distance-regular graph with the same parameters
(intersection numbers) as H(2m + n, 4).



The Doob graphs

D(m, n) = Shm × Kn
4 =

m
×

n

If m > 0 then D(m, n) is a Doob graph.

D(0, n) is the Hamming graph H(n, 4)
(in general, H(n, q) = Kn

q )

D(m, n) is a distance-regular graph with the same parameters
(intersection numbers) as H(2m + n, 4).



The Doob graphs

D(m, n) = Shm × Kn
4 =

m
×

n

If m > 0 then D(m, n) is a Doob graph.

D(0, n) is the Hamming graph H(n, 4)
(in general, H(n, q) = Kn

q )

D(m, n) is a distance-regular graph with the same parameters
(intersection numbers) as H(2m + n, 4).



The Doob graphs

D(m, n) = Shm × Kn
4 =

m
×

n

If m > 0 then D(m, n) is a Doob graph.

D(0, n) is the Hamming graph H(n, 4)
(in general, H(n, q) = Kn

q )

D(m, n) is a distance-regular graph with the same parameters
(intersection numbers) as H(2m + n, 4).



Codes in Doob graphs

In Doob graphs MDS codes can be defined by parameters (2m+
n, |C |, d).
A distance-2 MDS code can be defined as the first cell of an

equitable partition with the quotient matrix

(︂
0 3N
N 2N

)︂
, N =

2m + n.

A distance-2 MDS code can be defined as a maximum indepen-
dent set of vertices (a maximum coclique) of the Doob graph.
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MDS codes in D(1, 0) and D(1, 1)

“Linear”: “Nonlinear”:

As in the case of H(n, 4), for a distance-2 MDS code in
D(m, n > 0), the value one Hamming coordinate can be considered
as the color of the vertex of D(m, n − 1), we call such colorings
latin-like colorings.



2-fold MDS codes

A 2-fold MDS code in D(m, n) is defined as a cell of an equitable

partition with quotient matrix

(︂
N 2N
2N N

)︂
, N = 2m + n.

“Linear”:

Lemma

The 2-fold MDS codes in D(m, n) are the solutions of the maximum-

cut problem (the number of black-white edges is maximized).
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Decomposable 2-fold MDS codes

A 2-fold MDS code is called decomposable (indecomposable)
if its characteristic function can (cannot) be represented as
a modulo-2 sum of two or more {0, 1}- functions in disjoint
nonempty collections of variables.

A 2-fold MDS code is called linear if its characteristic function
is a modulo-2 sum of the characteristic functions of linear 2-fold
MDS codes in Sh and 2-fold MDS codes in K4.

Theorem

A 2-fold MDS code in D(m, n) is decomposable if an only if it induces

a disconnected subgraph of D(m, n).
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Semilinear and reducible MDS codes

A distance-2 MDS code is called semilinear if it is a subset of a
linear 2-fold MDS code.

A distance-2 MDS code is called reducible if the corresponding
latin-like coloring is a repetition-free composition of latin-like
colorings of Doob (Hamming) graphs of smaller diameter.

Theorem

Every distance-2 MDS code in D(m, n) is semilinear or reducible.
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MDS codes, 2 < d < 2m + n

diam graph d = 3 d = 4 graph diam

4 D(1, 2) 1 code 1 code D(1, 3) 5
4 D(2, 0) 2 codes 2 codes D(2, 1) 5

5 D(1, 3) 1 code 0 D(1, 4) 6
5 D(2, 1) 2 codes 1 code D(2, 2) 6

0 D(3, 0) 6

The distance-3 codes in Doob graphs of diameter 5 are 1-perfect.
Two of these three codes were constructed in [Koolen, Munemasa,
2000]. Only one of these three codes can be extended to a
distance-4 code in a Doob graph of diameter 6.



Partition lemma

Lemma

If {G1, G2, G3} is an edge partition of the complete graph K16 and

G1 and G2 are strongly regular graphs with 𝜆 = 𝜇 = 2 (i.e., K4×K4

or Sh), then K3 is K4 + K4 + K4 + K4.

A distance-3 MDS code in D(2, 0) or D(1, 2) can be sonsidered as
a set {(x , f (x) | x ∈ V (Sh)}. If (x , f (x)) and (x ′, f (x ′)) are
elements of a distance-3 MDS code in D(2, 0) or D(1, 2), then
{x , x ′} and {f (x), f (x ′)} cannot be edjes simultaneously. Applying
Lemma, we see three non-isomorphic situations, two corresponding
to D(2, 0) and one corresponding to D(1, 2).



MDS codes, d = 2m + n

A distance-2m + n MDS code in D(m, n) consists of 4 vertices
(x i1, ..., x

i
m, y

i
1, ..., y

i
n), i = 1, 2, 3, 4. for every Shrikhande coordinate

j , the set {x1j , x2j , x3j , x4j } is a coclique in Sh. There are two
nonisomorphic 4-cocliques in Sh. For the nonlinear coclique, there
are three nonisomorphic ordering..... The total number of
non-isomorphic MDS codes is m3/36+ O(m2).



Smallest eigenvalue

It can be seen that the eigenvalues of the quotient matrices(︂
0 3N
N 2N

)︂
, and

(︂
N 2N
2N N

)︂
, N = 2m + n, are the largest

(3N) and the smallest (−N) eigenvalue of D(m, n).
The only other admissible quotient matrix with this property is(︂

0.5N 2.5N
1.5N 1.5N

)︂
=

(︂
m 5m
3m 3m

)︂
.
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