On MDS and perfect codes in Doob graphs

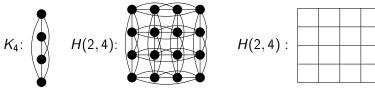
Denis Krotov, j.w. with Evgeny Bespalov

Sobolev Institute of Mathematics, Novosibirsk, Russia

G2S2, Novosibirsk, 15-28 May 2016

Hamming graph

- $\Sigma = \{0, 1, \dots, q-1\}$. Σ^n the set of *n*-words over Σ .
- The graph with the vertex set Σⁿ, where two words are adjacent iff they differ in only one coordinate, is called the Hamming graph H(n, q). The Hamming graph can be considered as the Cartesian product of n copies of the complete graph K_q: H(n,q) = K_q × ... × K_q.



Equitable partitions

Let
$$G = (V(G), E(G))$$
 be a graph.

Definition

A partition (C_1, \ldots, C_m) of V(G) is an equitable partition with quotient matrix $S = (S_{ij})_{i,j=1}^m$ iff every element of C_i is adjacent with exactly S_{ij} elements of C_j .

Equitable partitions \sim regular partitions \sim partition designs \sim perfect colorings $\sim \ldots$

1-Perfect codes

- A set C of vertices of a regular graph G = (V, E) is called a 1-perfect code iff every ball of radius 1 contains exactly one element of C.
- In other words, $(C, V \setminus C)$ is an equitable partition with quotient matrix $\begin{pmatrix} 0 & k \\ 1 & k-1 \end{pmatrix}$.

1-Perfect codes

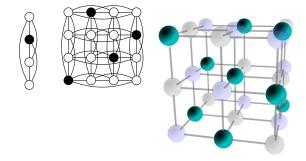
- A set C of vertices of a regular graph G = (V, E) is called a 1-perfect code iff every ball of radius 1 contains exactly one element of C.
- In other words, $(C, V \setminus C)$ is an equitable partition with quotient matrix $\begin{pmatrix} 0 & k \\ 1 & k-1 \end{pmatrix}$.

- A set C of vertices of H(n,q) is called an MDS code with distance d if every subgraph isomorphic to H(d-1,q) contains exactly one element of C.
- In other words, C is a distance-d MDS codes iff it has parameters (n, q^{n-d+1}, d)_q.
- C is a distance-2 MDS code iff $(C, V \setminus C)$ is an equitable partition with quotient matrix $\begin{pmatrix} 0 & n(q-1) \\ n & n(q-2) \end{pmatrix}$.

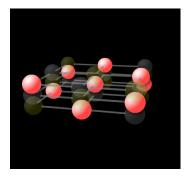
- A set C of vertices of H(n,q) is called an MDS code with distance d if every subgraph isomorphic to H(d-1,q) contains exactly one element of C.
- In other words, C is a distance-d MDS codes iff it has parameters (n, q^{n-d+1}, d)q.
- C is a distance-2 MDS code iff $(C, V \setminus C)$ is an equitable partition with quotient matrix $\begin{pmatrix} 0 & n(q-1) \\ n & n(q-2) \end{pmatrix}$.

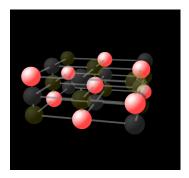
- A set C of vertices of H(n,q) is called an MDS code with distance d if every subgraph isomorphic to H(d-1,q) contains exactly one element of C.
- In other words, C is a distance-d MDS codes iff it has parameters (n, q^{n-d+1}, d)_q.
- C is a distance-2 MDS code iff $(C, V \setminus C)$ is an equitable partition with quotient matrix $\begin{pmatrix} 0 & n(q-1) \\ n & n(q-2) \end{pmatrix}$.

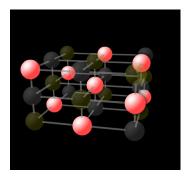
Distance-2 MDS codes: examples

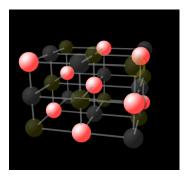


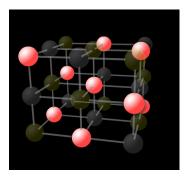
The distance-2 MDS codes are the maximum independent sets in the Hamming graphs.

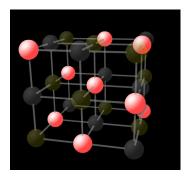












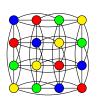
Latin hypercubes

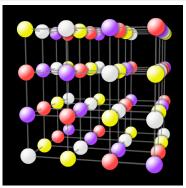
Definition

A latin hypercube is an equitable partition of H(n, q) with quotient matrix $nJ_n - nI_n$.

n-2

$$n = 3$$
:





- d = 1: the set of all vertices (trivial).
- d = 2: latin hypercubes, exist for every n.
 - q=2,3- only one, up to equivalence
 - q = 4 completely characterized [K., Potapov, 2009]
- 2 < d < n: the length is bounded: $n \le 2q-2$ (MDS conjecture: $n \le q+2$, moreover, $n \le q+1$ for most cases)
 - Classification up to equivalence, q ≤ 8: [Kokkala, Östergård, 2015] (n = 5, d = 3), [K., Kokkala, Östergård, 2015] (n = 5, d > 3), [Kokkala, Östergård, 2015+] (d > 3).
- d = n, |C| = q; for every n and q there is only one code in this case, up to isomorphism.
- d = n + 1: singleton (trivial).

- d = 1: the set of all vertices (trivial).
- d = 2: latin hypercubes, exist for every n.
 - q = 2, 3 only one, up to equivalence
 - q = 4 completely characterized [K., Potapov, 2009]
- 2 < d < n: the length is bounded: $n \le 2q-2$ (MDS conjecture: $n \le q+2$, moreover, $n \le q+1$ for most cases)
 - Classification up to equivalence, q ≤ 8: [Kokkala, Östergård, 2015] (n = 5, d = 3), [K., Kokkala, Östergård, 2015] (n = 5, d > 3), [Kokkala, Östergård, 2015+] (d > 3).
- d = n, |C| = q; for every n and q there is only one code in this case, up to isomorphism.
- d = n + 1: singleton (trivial).

- d = 1: the set of all vertices (trivial).
- d = 2: latin hypercubes, exist for every n.
 - q = 2, 3 only one, up to equivalence
 - q = 4 completely characterized [K., Potapov, 2009]
- 2 < d < n: the length is bounded: $n \le 2q-2$ (MDS conjecture: $n \le q+2$, moreover, $n \le q+1$ for most cases)
 - Classification up to equivalence, q ≤ 8: [Kokkala, Östergård, 2015] (n = 5, d = 3), [K., Kokkala, Östergård, 2015] (n = 5, d > 3), [Kokkala, Östergård, 2015+] (d > 3).
- d = n, |C| = q; for every n and q there is only one code in this case, up to isomorphism.
- d = n + 1: singleton (trivial).

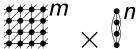
- d = 1: the set of all vertices (trivial).
- d = 2: latin hypercubes, exist for every n.
 - q = 2, 3 only one, up to equivalence
 - q = 4 completely characterized [K., Potapov, 2009]
- 2 < d < n: the length is bounded: n ≤ 2q−2 (MDS conjecture: n ≤ q + 2, moreover, n ≤ q + 1 for most cases)
 - Classification up to equivalence, q ≤ 8: [Kokkala, Östergård, 2015] (n = 5, d = 3), [K., Kokkala, Östergård, 2015] (n = 5, d > 3), [Kokkala, Östergård, 2015+] (d > 3).
- d = n, |C| = q; for every n and q there is only one code in this case, up to isomorphism.
- d = n + 1: singleton (trivial).

- d = 1: the set of all vertices (trivial).
- d = 2: latin hypercubes, exist for every n.
 - q = 2, 3 only one, up to equivalence
 - q = 4 completely characterized [K., Potapov, 2009]
- 2 < d < n: the length is bounded: $n \le 2q-2$ (MDS conjecture: $n \le q+2$, moreover, $n \le q+1$ for most cases)
 - Classification up to equivalence, $q \le 8$: [Kokkala, Östergård, 2015] (n = 5, d = 3), [K., Kokkala, Östergård, 2015] (n = 5, d > 3), [Kokkala, Östergård, 2015+] (d > 3).
- d = n, |C| = q; for every n and q there is only one code in this case, up to isomorphism.
- d = n + 1: singleton (trivial).

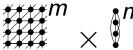
- d = 1: the set of all vertices (trivial).
- d = 2: latin hypercubes, exist for every n.
 - q = 2, 3 only one, up to equivalence
 - q = 4 completely characterized [K., Potapov, 2009]
- 2 < d < n: the length is bounded: $n \le 2q-2$ (MDS conjecture: $n \le q+2$, moreover, $n \le q+1$ for most cases)
 - Classification up to equivalence, $q \le 8$: [Kokkala, Östergård, 2015] (n = 5, d = 3), [K., Kokkala, Östergård, 2015] (n = 5, d > 3), [Kokkala, Östergård, 2015+] (d > 3).
- d = n, |C| = q; for every n and q there is only one code in this case, up to isomorphism.
- d = n + 1: singleton (trivial).

- d = 1: the set of all vertices (trivial).
- d = 2: latin hypercubes, exist for every n.
 - q = 2, 3 only one, up to equivalence
 - q = 4 completely characterized [K., Potapov, 2009]
- 2 < d < n: the length is bounded: $n \le 2q-2$ (MDS conjecture: $n \le q+2$, moreover, $n \le q+1$ for most cases)
 - Classification up to equivalence, $q \le 8$: [Kokkala, Östergård, 2015] (n = 5, d = 3), [K., Kokkala, Östergård, 2015] (n = 5, d > 3), [Kokkala, Östergård, 2015+] (d > 3).
- d = n, |C| = q; for every n and q there is only one code in this case, up to isomorphism.
- d = n + 1: singleton (trivial).

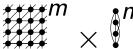
- d = 1: the set of all vertices (trivial).
- d = 2: latin hypercubes, exist for every n.
 - q = 2, 3 only one, up to equivalence
 - q = 4 completely characterized [K., Potapov, 2009]
- 2 < d < n: the length is bounded: $n \le 2q-2$ (MDS conjecture: $n \le q+2$, moreover, $n \le q+1$ for most cases)
 - Classification up to equivalence, $q \le 8$: [Kokkala, Östergård, 2015] (n = 5, d = 3), [K., Kokkala, Östergård, 2015] (n = 5, d > 3), [Kokkala, Östergård, 2015+] (d > 3).
- d = n, |C| = q; for every n and q there is only one code in this case, up to isomorphism.
- d = n + 1: singleton (trivial).



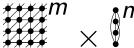
- $D(m,n) = Sh^m \times K_4^n =$
- If m > 0 then D(m, n) is a Doob graph.
- D(0, n) is the Hamming graph H(n, 4)(in general, $H(n, q) = K_q^n$)
- D(m, n) is a distance-regular graph with the same parameters (intersection numbers) as H(2m + n, 4).



- $D(m,n) = Sh^m \times K_4^n =$
- If m > 0 then D(m, n) is a Doob graph.
- D(0, n) is the Hamming graph H(n, 4) (in general, H(n, q) = Kⁿ_q)
- D(m, n) is a distance-regular graph with the same parameters (intersection numbers) as H(2m + n, 4).



- $D(m,n) = Sh^m \times K_4^n =$
- If m > 0 then D(m, n) is a Doob graph.
- D(0, n) is the Hamming graph H(n, 4)(in general, $H(n, q) = K_q^n$)
- D(m, n) is a distance-regular graph with the same parameters (intersection numbers) as H(2m + n, 4).



- $D(m,n) = Sh^m \times K_4^n =$
- If m > 0 then D(m, n) is a Doob graph.
- D(0, n) is the Hamming graph H(n, 4)(in general, $H(n, q) = K_q^n$)
- D(m, n) is a distance-regular graph with the same parameters (intersection numbers) as H(2m + n, 4).

Codes in Doob graphs

- In Doob graphs MDS codes can be defined by parameters (2m + n, |C|, d).
- A distance-2 MDS code can be defined as the first cell of an equitable partition with the quotient matrix $\begin{pmatrix} 0 & 3N \\ N & 2N \end{pmatrix}$, N = 2m + n.
- A distance-2 MDS code can be defined as a maximum independent set of vertices (a maximum coclique) of the Doob graph.

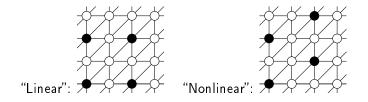
Codes in Doob graphs

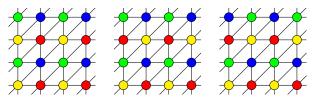
- In Doob graphs MDS codes can be defined by parameters (2m + n, |C|, d).
- A distance-2 MDS code can be defined as the first cell of an equitable partition with the quotient matrix $\begin{pmatrix} 0 & 3N \\ N & 2N \end{pmatrix}$, N = 2m + n.
- A distance-2 MDS code can be defined as a maximum independent set of vertices (a maximum coclique) of the Doob graph.

Codes in Doob graphs

- In Doob graphs MDS codes can be defined by parameters (2m + n, |C|, d).
- A distance-2 MDS code can be defined as the first cell of an equitable partition with the quotient matrix $\begin{pmatrix} 0 & 3N \\ N & 2N \end{pmatrix}$, N = 2m + n.
- A distance-2 MDS code can be defined as a maximum independent set of vertices (a maximum coclique) of the Doob graph.

MDS codes in D(1,0) and D(1,1)





As in the case of H(n, 4), for a distance-2 MDS code in D(m, n > 0), the value one Hamming coordinate can be considered as the color of the vertex of D(m, n - 1), we call such colorings latin-like colorings.

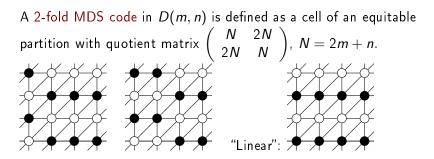
2-fold MDS codes

A 2-fold MDS code in D(m, n) is defined as a cell of an equitable partition with quotient matrix $\begin{pmatrix} N & 2N \\ 2N & N \end{pmatrix}$, N = 2m + n.

_emma

The 2-fold MDS codes in D(m, n) are the solutions of the maximumcut problem (the number of black-white edges is maximized).

2-fold MDS codes



Lemma

The 2-fold MDS codes in D(m, n) are the solutions of the maximumcut problem (the number of black-white edges is maximized).

Decomposable 2-fold MDS codes

- A 2-fold MDS code is called decomposable (indecomposable) if its characteristic function can (cannot) be represented as a modulo-2 sum of two or more {0,1}- functions in disjoint nonempty collections of variables.
- A 2-fold MDS code is called linear if its characteristic function is a modulo-2 sum of the characteristic functions of linear 2-fold MDS codes in *Sh* and 2-fold MDS codes in *K*₄.

Theorem

A 2-fold MDS code in D(m, n) is decomposable if an only if it induces a disconnected subgraph of D(m, n).

Decomposable 2-fold MDS codes

- A 2-fold MDS code is called decomposable (indecomposable) if its characteristic function can (cannot) be represented as a modulo-2 sum of two or more {0,1}- functions in disjoint nonempty collections of variables.
- A 2-fold MDS code is called linear if its characteristic function is a modulo-2 sum of the characteristic functions of linear 2-fold MDS codes in *Sh* and 2-fold MDS codes in *K*₄.

Theorem

A 2-fold MDS code in D(m, n) is decomposable if an only if it induces a disconnected subgraph of D(m, n).

Decomposable 2-fold MDS codes

- A 2-fold MDS code is called decomposable (indecomposable) if its characteristic function can (cannot) be represented as a modulo-2 sum of two or more {0,1}- functions in disjoint nonempty collections of variables.
- A 2-fold MDS code is called linear if its characteristic function is a modulo-2 sum of the characteristic functions of linear 2-fold MDS codes in *Sh* and 2-fold MDS codes in *K*₄.

Theorem

A 2-fold MDS code in D(m, n) is decomposable if an only if it induces a disconnected subgraph of D(m, n).

Semilinear and reducible MDS codes

- A distance-2 MDS code is called semilinear if it is a subset of a linear 2-fold MDS code.
- A distance-2 MDS code is called reducible if the corresponding latin-like coloring is a repetition-free composition of latin-like colorings of Doob (Hamming) graphs of smaller diameter.

Theorem

Every distance-2 MDS code in D(m, n) is semilinear or reducible.

Semilinear and reducible MDS codes

- A distance-2 MDS code is called semilinear if it is a subset of a linear 2-fold MDS code.
- A distance-2 MDS code is called reducible if the corresponding latin-like coloring is a repetition-free composition of latin-like colorings of Doob (Hamming) graphs of smaller diameter.

Theorem

Every distance-2 MDS code in D(m, n) is semilinear or reducible.

Semilinear and reducible MDS codes

- A distance-2 MDS code is called semilinear if it is a subset of a linear 2-fold MDS code.
- A distance-2 MDS code is called reducible if the corresponding latin-like coloring is a repetition-free composition of latin-like colorings of Doob (Hamming) graphs of smaller diameter.

Theorem

Every distance-2 MDS code in D(m, n) is semilinear or reducible.

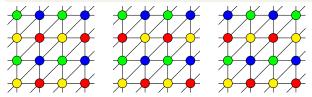
MDS codes, 2 < d < 2m + n

diam	graph	<i>d</i> = 3	<i>d</i> = 4	graph	diam
4	D(1,2)	1 code	1 code	D(1, 3)	5
4	D(2, 0)	2 codes	2 codes	D(2, 1)	5
5	D(1,3)	1 code	0	D(1,4)	6
5	D(2, 1)	2 codes	1 code	D(2,2)	6
			0	D(3,0)	6

The distance-3 codes in Doob graphs of diameter 5 are 1-perfect. Two of these three codes were constructed in [Koolen, Munemasa, 2000]. Only one of these three codes can be extended to a distance-4 code in a Doob graph of diameter 6.

Lemma

If $\{G_1, G_2, G_3\}$ is an edge partition of the complete graph K_{16} and G_1 and G_2 are strongly regular graphs with $\lambda = \mu = 2$ (i.e., $K_4 \times K_4$ or Sh), then K_3 is $K_4 + K_4 + K_4 + K_4$.



A distance-3 MDS code in D(2,0) or D(1,2) can be sonsidered as a set $\{(x, f(x) | x \in V(Sh)\}$. If (x, f(x)) and (x', f(x')) are elements of a distance-3 MDS code in D(2,0) or D(1,2), then $\{x, x'\}$ and $\{f(x), f(x')\}$ cannot be edjes simultaneously. Applying Lemma, we see three non-isomorphic situations, two corresponding to D(2,0) and one corresponding to D(1,2).

MDS codes, d = 2m + n

A distance-2m + n MDS code in D(m, n) consists of 4 vertices $(x_1^i, ..., x_m^i, y_1^i, ..., y_n^i)$, i = 1, 2, 3, 4. for every Shrikhande coordinate j, the set $\{x_j^1, x_j^2, x_j^3, x_j^4\}$ is a coclique in Sh. There are two nonisomorphic 4-cocliques in Sh. For the nonlinear coclique, there are three nonisomorphic ordering..... The total number of non-isomorphic MDS codes is $m^3/36 + O(m^2)$.

Smallest eigenvalue

It can be seen that the eigenvalues of the quotient matrices $\begin{pmatrix} 0 & 3N \\ N & 2N \end{pmatrix}$, and $\begin{pmatrix} N & 2N \\ 2N & N \end{pmatrix}$, N = 2m + n, are the largest (3N) and the smallest (-N) eigenvalue of D(m, n). The only other admissible quotient matrix with this property is $\left(\begin{array}{cc} 0.5N & 2.5N \\ 1.5N & 1.5N \end{array}\right) = \left(\begin{array}{cc} m & 5m \\ 3m & 3m \end{array}\right).$