On characterization of the Grassmann graphs $J_{2}(2 d+2, d)$

Alexander Gavrilyuk
University of Science and Technology of China, Hefei, China
N.N. Krasovskii Institute of Mathematics and Mechanics UB RAS, Yekaterinburg, Russia sasha@ustc.edu.cn

This is joint work with Jack Koolen

The Grassmann graph $J_{q}(n, d), n \geq 2 d$, is a graph (of diameter d) defined on the set of d-dimensional subspaces of an n-dimensional vector space over the finite field \mathbb{F}_{q}, with two subspaces being adjacent if their intersection has dimension $d-1$.

In 1995, Metsch [1] showed that a distance-regular graph with the same intersection array as $J_{q}(n, d)$ is indeed $J_{q}(n, d)$ unless $n=2 d, n=2 d+1,(n=2 d+2$ if $q \in\{2,3\})$, or $(n=2 d+3$ if $q=2)$.

In 2005, Van Dam and Koolen [2] constructed the twisted Grassmann graphs, a family of distanceregular graphs with the same intersection array as $J_{q}(2 d+1, d)$, but not isomorphic to them, for all prime powers q and $d \geq 2$.

In 2015 , the authors showed that the Grassmann graph $J_{2}(2 d, d)$ can be characterized by its intersection array, if the diameter d is an odd number or large enough.

In this talk, we will discuss a characterization of the Grassmann graphs $J_{2}(2 d+2, d)$.

References

[1] K. Metsch, A characterization of Grassmann graphs. European J. Combin. 16 (1995) 171-195.
[2] E. R. van Dam, J. H. Koolen, A new family of distance-regular graphs with unbounded diameter. Invent. Math. 162 (2005) 189-193.

