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Cayley graph

Cayley graph

Let S be a subset of a group G , such that S = S−1.
The Cayley graph of G , with respect to S , is the graph Cay(G ; S)
whose vertices are the elements of G , and with an edge x ∼ xs, for
each x ∈ G and s ∈ S .

Edge-colouring of Cayley graphs

Cay(G ; S) has a natural edge-colouring. Each edge of the form
x ∼ xs is coloured with the set {s, s−1}.
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Colour-preserving automorphisms

Colour-preserving automorphism

Let G be a group and S a subset of G such that S = S−1. A
permutation φ of G is a colour-preserving automorphism of
Cay(G ; S) if and only if we have φ(xs) ∈ {φ(x)s±1}, for each
x ∈ G and s ∈ S .
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Colour-preserving automorphisms - examples

Left translation

The left translation x 7→ gx is a colour-preserving automorphism of
Cay(G ; S).

Automorphisms of G

An automorphism α of G such that α(s) ∈ {s±1} for all s ∈ S is a
colour-preserving automorphism of Cay(G ; S).
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Colour-preserving automorphisms - examples
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Affine function & Cayley Colour Automorphism (CCA)

Affine function

A function φ : G → G is said to affine if it is the composition of an
automorphism α ∈ Aut(G ) with left translation by an element of
G . That is, φ(x) = α(gx) for some α ∈ Aut(G ) and g ∈ G .

CCA Cayley graphs

A Cayley graph Cay(G ;S) is CCA if all of its colour-preserving
automorphisms are affine functions on G .

CCA groups

A group G is said to be CCA group if every connected Cayley
graph on G is CCA.
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Q8 and Z4 × Z2 are not CCA groups

Cay(Q8; {±i ,±j}) ∼= Cay(Z4 × Z2; {±(1, 0),±(1, 1)}) ∼= K4,4
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Examples

Nonabelian group of order 21

The nonabelian group of order 21 is not CCA.
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Examples

Wreath product Zm o Zn

The wreath product Zm o Zn is not CCA whenever m ≥ 3 and
n ≥ 2.
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Main results

Theorem 1

There is a non-CCA group of order n if and only if n ≥ 8 and n is
divisible by either 4, 21, or a number of the form pqq, where p and
q are primes.

An abelian group is not CCA if and only if it has a direct factor that
is isomorphic to either Z4 × Z2 or a group of the form
Z2k × Z2 × Z2, with k ≥ 2.

Every dihedral group is CCA.
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Z2n × Z2 × Z2, n ≥ 2 is not CCA
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Z2n × Z2 × Z2, n ≥ 2 is not CCA
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Main results

Proposition

Every non-CCA group G of odd square-free order has a section that
is isomorphic to (unique) nonabelian group F21 of order 21.

There exists a unique non-CCA Cayley graph Γ of F21.

If Cay(G ,S) is a non-CCA graph of a group G of odd square-free
order, then G = H × F21 for some CCA group H, and
Cay(G ;S) = Cay(H;T )�Γ.
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Cay(F21; {a±1, (ax)±1}) the unique non-CCA graph of F21

F21 = 〈a, x | a3 = x7 = e, a−1xa = x2〉
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Main results

Let A be an abelian group of even order. Choose an involution y of A.
The corresponding generalized dicyclic group is

Dic(y ,A) = 〈x ,A | x2 = y , x−1ax = a−1, for all a ∈ A〉.

For n ≥ 1, a semidihedral (or quasidihedral) group is a group

SemiD16n = 〈a, x | a8n = x2 = e, xa = a4n−1x〉.

Theorem 2

No generalized dicyclic group or semidihedral group is CCA, except
that Z4 is dicyclic, but is CCA.
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Main results

Let α be an automorphism of a group A, and let n ∈ Z+. Then we can
define an automorphism α̃ of An by

α̃(w1, . . . ,wn) = (α(wn),w1, . . . ,wn−1).

It is easy to see that the order of α̃ is n times the order of α, and so we
may form the corresponding semidirect product An o Zn|α|, called the
semi-wreathed product of A by Zn with respect to α.

Theorem 3

Every non-CCA group of odd order has a section that is isomorphic
to either the nonabelian group of order 21 or a certain
generalization of a wreath product (called semi-wreathed product).
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Main results

Theorem 4

If G × H is CCA then G and H are both CCA. The converse is not
always true (for example, Z4 × Z2 is not CCA), but it does hold if
gcd(|G |, |H|) = 1.
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Colour-permuting automorphisms

Colour-permuting automorphisms

An automorphism α of a Cayley graph Cay(G ; S) is
colour-permuting if it respects the colour classes; that is, if two
edges have the same colour, then thier images under α must also
have the same colour. That is, there exists a permutation π of S
s.t.

α(gs) ∈ {α(g)π(s)±1}

for all g ∈ G and s ∈ S .

Strongly CCA groups

A group G is strongly CCA if every colour-permuting
automorphism of every connected Cayley graph on G is affine.
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Strongly CCA groups

Any strongly CCA group is CCA.
Converse is not true.
For example, any dihedral group is CCA but it is not strongly CCA
if its order is of the form 8k + 4. However, the converse does hold
for abelian groups and groups of odd order.

Proposition

A CCA group is strongly CCA if either it is abelian or it has odd
order.
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Questions

What other groups or graphs are CCA?
Strongly CCA?
Are graphs of “small” valency CCA, even on non-CCA groups?
Are there other natural colourings for which we could ask this
question?
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Thank you!
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