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Semifield, nuclei

A semifield is an algebraic structure (W,+, ◦), satisfying the following
axioms:
1) (W,+) is abelian group;
2) (W ∗, ◦) is a loop;
3) x◦(y+z) = x◦y+x◦z and (y+z)◦x = y◦x+z◦x for all x, y, z ∈W .
Right, middle and left nuclei of semifield W are the subsets

Nr = {x ∈W | (a ◦ b) ◦ x = a ◦ (b ◦ x) ∀a, b ∈W},
Nm = {x ∈W | (a ◦ x) ◦ b = a ◦ (x ◦ b) ∀a, b ∈W},
Nl = {x ∈W | (x ◦ a) ◦ b = x ◦ (a ◦ b) ∀a, b ∈W}.

The nucleus of semifield W is an intersection

N = Nl ∩Nm ∩Nr.

The center of semifield W is a set

Z = {x ∈ N | x ◦ a = a ◦ x ∀a ∈W}.
The nuclei and the center of any finite semifield W are the subfields.
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Spread set

Theorem
Any finite semifield is a linear space over Nl, Nm, Nr, N , Z.

Let W be n-dimensional linear space over F ' Zp and θ be a bijective
map from linear space W to ring M(n, F ) of all (n×n)-matrices over F .
The image R = θ(W ) is called a spread set, if:
1) identity and zero matrices E and O are in R,
2) R \ {O} is a subset of GL(n, F ),
3) R is closed under addition: θ(u+ v) = θ(u) + θ(v) (u, v ∈W ).

In this case we have a semifield (W,+, ◦) with multiplication law

x ◦ y := x · θ(y) (x = (x1, x2, ..., xn), y ∈W ).

3 / 23



Degrees, orders, spectra

Let v be an element of multiplicative loop L. An arbitrary product of m
multipliers is said to be m-th degree of v, if every multiplier coincides
with v. If there exist some m-th degree of v which is equal to the identity,
then minimal such integer m ≥ 1 is said to be the order of v and
denoted by |v|. The set of orders |v| of all elements v ∈ L is said to be a
spectrum of loop L.
Using the formulas

v1) = v = v(1, vm) = vm−1) · v, v(m = v · v(m−1,

we define the right-ordered and the left-ordered m-th degrees of v, re-
spectively, vm) and v(m. Analogously we define right order |v|r and left
order |v|l of v and, also, right and left spectra of L.
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Problems

For finite proper semifields and quasifields we investigate the following
problems which were presented, in mainly, in 2013 at Mech.-Matem.
Dept. of Moscow State Univ. (research seminar of chair of algebra) and
in 20141.

(A) Enumerate maximal subfields and their possible orders.

(B) Find the finite quasifields S with not-one-generated loop S∗.
Hypotheses: the loop of any finite semifield is one-generated.

(C) What loop spectra S∗ of finite semifields and quasifields are possible?

(D) Find the automorphism group AutS.

1V.M. Levchuk, S.V. Panov, P.K. Shtukkert, The structure of finite quasifields
and their projective translation planes, Proceed. XII Intern. Conf. on Algebra and
Number Theory. Tula, 106–108 (2014).
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Wene’s conjecture

It was conjectured by Wene2 that any finite semifield is right or left
primitive, i.e. D∗ is the set of right- or left-ordered degrees of an element
in a semifield D. In 2004 I. Rúa3 has provided a counter-example to
Wene’s conjecture by showing that Knuth’s Binary semifield of order 32
is neither right nor left primitive. This is the unique semifield with this
property, among all 2502 finite semifields of order 32.

Now the primitivity investigations are completed for semifields of orders
up to 125. Only two semifields of even orders 32 and 64 are neither left
nor right primitive. And the counter-examples for semifields of odd order
are not known.

2G.P. Wene, On the multiplicative structure of finite division rings, Aequationes
Math. 41 791–803 (1991).

3I.F. Rua, Primitive and Non-Primitive Finite Semifields, Commun. Algebra. 22
223–233 (2004).
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Wene’s conjecture

The investigations of primitivity are based on properties of spread set. It
is known that for any finite semifield D with Z(D) ' GF (q) and spread
set Σ the characteristic polynomial for any matrix from Σ \ {λI | λ ∈
GF (q)} has no linear factors. Moreover, it was proved4:

Theorem

If D is a finite semifield of dimension d over its center Z(D) = GF (q),
then w ∈ D is a left primitive element of D iff the characteristic polyno-
mial of a linear map Lw : D → D, given by Lw(x) = wx, is an irreducible
primitive polynomial of degree d over Z(D).

4I.R. Hentzel, I. F. Rua, Primitivity of Finite Semifields with 64 and 81 elements,
International Journal of Algebra and Computation, 17 (7), 1411–1429 (2007).
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Wene’s conjecture

We also note some general results on primitivity.

Theorem

Let S be a semifield, n-dimensional over its center GF (q).
(a) If n = 3, then S is left and right primitivea.
(b) If n is prime and q is large enough, then S is left and right primitiveb

aI.F. Rua, Primitive and Non-Primitive Finite Semifields, Commun. Algebra. 22
223–233 (2004).

bR. Gow, J. Sheekey, On primitive elements in finite semifields, Finite Fields and
Their Applications, 17, 194–204 (2011).
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Wene’s conjecture

Cordero and Jha (2009-2010) demonstrate the existence at least one non-
primitive quasifield for any order p2n > 16 and give the geometrical
condition for primitivity:

Lemma

A non-primitive quasifield of square order q2 exists iff q > 4.

Lemma

For all sufficiently large primes p, the semifields coordinatizing a semifield
plane Π of order p5 are all primitive (right and left) if Π does not contain
any proper subplane Π0 of order > p.
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Hentzel – Rúa semifield of order 64

In 2007 I. Rúa and I. Hentzel has provide5 second counter-example to
Wene’s conjecture. This new finite semifield is the unique which is neither
left nor right primitive among all finite semifields with 64 elements. These
authors construct also 35 semifields of order 64 that not left but are right
primitive.

5I.R. Hentzel, I. F. Rua, Primitivity of Finite Semifields with 64 and 81 elements,
International Journal of Algebra and Computation, 17 (7), 1411–1429 (2007).
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Hentzel – Rúa semifield of order 64

Let H be a 6-dimensional linear space over Z2,

H = {x = (x1, . . . , x6) | xi ∈ Z2, i = 1, . . . , 6},
A1, A2, . . . , A6 be the matrices in GL6(2), determined by Hentzel and
Rúa. Define the map θ from H to the ring of (6× 6)-matrices over Z2 by
the rule:

θ(x) = x1A1 + · · ·+ x6A6, x ∈ H;

θ is a bijection from H into GL6(2) ∪ {0} and R = {θ(x) | x ∈ H} is a
spread set in GL6(2) ∪ {0}. Define the multiplication rule ∗ on H as

x ∗ y = x · θ(y) = x
6∑
i=1

yiAi.

Then 〈H,+, ∗〉 is a semifield of order 64, which is said to be the Hentzel–
Rúa semifield. It is neither right nor left primitive. The vector

e = (1, 0, 0, 0, 0, 0)

is an identity under multiplication in H.
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Automorphism group, maximal subfields

Theorem

The automorphism group of Hentzel–Rúa semifield H is isomorphic to
the symmetric group S3 and hence has exactly three involution automor-
phisms.

Theorem

The semifield H contains exactly six maximal subfields:

5 subfields of order 8, three from them are stabilizators of different invo-
lution automorphisms;

the unique subfield of order 4, which is a stabilizator of automorphism of
order 3.
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Automorphism of order 2

Theorem
Let W be a semifield of order pn which admits an automorphism τ of
order 2. Then n = 2m and W contains the sub-semifield of order pn/2

F(τ) = {x ∈W | xτ = x}.

Remark. As Hentzel–Rúa semifield H is of order 64, then sub-semifields
which are the stabilizators of involutory automorphisms are all the sub-
fileds of order 8.
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Spectra

Let’s denote the subsets of elements from H:

K(m,n, k) = {x ∈ H | |x|l = m, |x|r = n, |x| = k}, m, n, k ∈ N.

Then, evidently, K(3, 3, 3) ∪ {0, e} is a subfield of order 4, K(7, 7, 7) ∪
{0, e} is an union of all subfields of order 8. Moreover,

|K(6, 6, 6)| = 12, |K(7, 7, 6)| = 6, |K(12, 12, 7)| = 6, |K(15, 15, 5)| = 6.

The calculation of orders allows to

Lemma

The spectrum of the loop H∗ is {1, 3, 5, 6, 7}, the left and right spectra
coincide with {1, 3, 6, 7, 12, 15},

H∗ = K(1, 1, 1) ∪K(3, 3, 3) ∪K(7, 7, 7) ∪K(6, 6, 6)∪
∪K(7, 7, 6) ∪K(12, 12, 7) ∪K(15, 15, 5).
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Remarks on orders

Remark 1. For any x ∈ H∗ its left order coincides with right order,

|x|l = |x|r;

for any x ∈ H∗ \ {e} (left, right) order of element x + e coincides with
(left, right) order of x:

|x+ e|l = |x|l, |x+ e|r = |x|r, |x+ e| = |x|.

Remark 2. For any x ∈ H∗ \ {e}

(|x|l, |H∗|) 6= 1, (|x|r, |H∗|) 6= 1.

Remark 3. Let x ∈ H and for any n ∈ N

xn) = x(n.

Then x belongs to the union of subfields {0, e} ∪K(3, 3, 3) ∪K(7, 7, 7).
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One-generability conjecture

Hentzel–Rúa semifieldH is not primitive but the loopW ∗ is one-generated:

Lemma

Any element x ∈ K(6, 6, 6)∪K(7, 7, 6)∪K(12, 12, 7)∪K(15, 15, 5) gen-
erates the loop H∗, and for any n ≥ 10 H∗ is a union of all n-th degrees
of x.

Lemma
For any x ∈ H

x4) = x(4, x8) = x(8.

Lemma
Hentzel–Rúa semifield H is not commutative and

Nl = Nm = Nr = N = Z = {0, e} ' Z2.
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Map x→ x2

Lemma
The map ϕ : x→ x2 is a bijection on H, and

K(3, 3, 3)
ϕ→ K(3, 3, 3),

K(7, 7, 7)
ϕ→ K(7, 7, 7),

K(6, 6, 6)
ϕ→ K(6, 6, 6),

K(7, 7, 6)
ϕ→ K(12, 12, 7)

ϕ→ K(15, 15, 5)
ϕ→ K(7, 7, 6).
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Primitivity and ciclycity

Definition

Finite semifield D, d-dimensional over its center Z(D), is said to be:
1) left-ciclyc if there exists such an element a ∈ D (left-ciclyc element)
that

{e, a, a(2, . . . , a(d−1}

is Z(D)-base of semifield D;
2) left-primitive if there exists such an element a ∈ D (left-primitive
element) that

D∗ = {e, a, a(2, a(3, . . . },

where a(2 = aa, a(3 = aa(2, . . . .

Any left-primitive semifield is also left-ciclyc6. Nevertheless, even two
known exceptional semifields of orders 32 and 64 are ciclyc.

6I.R. Hentzel, I. F. Rua, Primitivity of Finite Semifields with 64 and 81 elements,
International Journal of Algebra and Computation, 17 (7), 1411–1429 (2007).
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Primitivity and ciclycity

Lemma
Any element x ∈ K(7, 7, 6) ∪ K(12, 12, 7) is both left-ciclyc and right-
ciclyc, i.e.

{e, x, x2, x(3, x(4, x(5} and {e, x, x2, x3), x4), x5)}

are the bases of linear space H over Z2.

Corollary
Hentzel–Rúa semifield H is both left-ciclyc and right-ciclyc.
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Minimal polynomials

Let a be an element from H∗ and θ(a) is a correspondent matrix from
spread set,

x ∗ a = xθ(a) (x ∈ H).

We shall denote by µa(x) the minimal polynomial of matrix θ(a)
(according the classical definition) and also introduce the minimal left
and right polynomials of element a.

The polynomial

M r
a(x) = cm ∗ xm) + cm−1 ∗ xm−1) + · · ·+ c2 ∗ x2 + c1 ∗ x+ c0 ∗ e

(where cm, . . . , c1, c0 ∈ Z2) is said to be right minimal polynomial of
element a ∈ H∗ if m ∈ N is minimal degree such that M r

a(a) = 0. The
left minimal polynomial M l

a(x) of element a we define analogously.
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Minimal polynomials

Lemma
The element a ∈ H∗ is left-ciclyc if and only if its left minimal polynomial
M l
a(x) is of degree 6.

(Analogously for right-ciclyc element.)

Remark. In general, the left (right) minimal polynomial of element a ∈
H∗ does not coincide with minimal polynomial µa(x) of the matrix θ(a).

The information on minimal polynomials is resumed in the table.
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The minimal polynomials of element a ∈ K
and matrix θ(a)

Subset K Mr
a (x) µa(x)

K(7, 7, 6) x6) + x5) + x4) + x3) + x2 + x+ e x6 + x5 + x4 + x3 + x2 + x+ 1

K(12, 12, 7) x6) + x5) + x3) + x+ e x6 + x5 + x3 + x+ 1

K(15, 15, 5) x4) + x+ e x6 + x5 + x4 + x3 + 1 =
= (x4 + x+ 1)(x2 + x+ 1)

K(6, 6, 6) x4) + x2 + e x6 + x5 + x3 + x+ 1 =
= (x4 + x2 + 1)(x2 + x+ 1)

K(7, 7, 7) x3) + x+ e x6 + x2 + 1 = (x3 + x+ 1)2

or or
x3) + x2 + e x6 + x4 + 1 = (x3 + x2 + 1)2

K(3, 3, 3) x2 + x+ e x2 + x+ 1
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Thank you for your attention!
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