Is there a $(4,27,2)$ partial geometry?

Patric Östergård
Aalto University, Finland
patric.ostergard@aalto.fi

This is joint work with Leonard Soicher

A partial geometry with parameters (s, t, α) consists of lines and points with the properties that (i) each line has $s+1$ points and two distinct lines intersect in at most one point; (ii) each point is on $t+1$ lines and two distinct point occur on at most one line; and (iii) for each point p that does not lie on a line l, there are exactly α lines through p that intersect l. The question whether there exists a $(4,27,2)$ partial geometry has tantalized researchers during the last couple of decades. Such a partial geometry would have 275 points and 1540 lines and its point graph would be a $(275,112,30,56)$ strongly regular graph (srg). There is a unique srg with the aforementioned parameters called the McLaughlin graph. In this talk, a computer search for a $(4,27,2)$ partial geometry starting from the McLaughlin graph is described. After 270 core-years and more than one physical year, the computers claim that there is no such partial geometry.

