Φ-Harmonic Functions on Graphs

Roman Panenko

Novosibirsk, August, 24, 2016

2

イロト 不得下 イヨト イヨト

Let Φ be a function with some special properties. Properly speaking, it is an *N*-function. In our talk we will consider a number of aspects of Φ -harmonic analysis on graphs. In particular, we will introduce the key definitions and will reveal that the ones in question are well-defined. Also we will give an overview of our results that bring discrete analogs of classical theorems for harmonic function in the usual sense: uniqueness theorem, Harnack's inequality, Harnack's principle. Our work generalizes results obtained in:

Holopainen, Ilkka, and Soardi, Paolo M.. "p-harmonic functions on graphs and manifolds Manuscripta mathematica 94.1 (1997): 95–110.

イロト イポト イヨト イヨト

Definition: N-function

A function $\Phi:\mathbb{R}\to\mathbb{R}$ is said to be N-function if it admit the following representation

$$\Phi(x) = \int_{0}^{|x|} \varphi(t) \, dt,$$

where $\varphi(t)$ is defined for $t \ge 0$, non-decreasing, left continuous, satisfying the properties $\varphi(t) > 0$ as t > 0; $\varphi(0) = 0$; $\lim_{t\to\infty} \varphi(t) = \infty$. From now on, we will write Φ' instead of φ . Therefore, for *N*-function Φ the following holds:

イロト イポト イヨト イヨト

Definition: N-function

A function $\Phi:\mathbb{R}\to\mathbb{R}$ is said to be N-function if it admit the following representation

$$\Phi(x) = \int_{0}^{|x|} \varphi(t) \, dt,$$

where $\varphi(t)$ is defined for $t \ge 0$, non-decreasing, left continuous, satisfying the properties $\varphi(t) > 0$ as t > 0; $\varphi(0) = 0$; $\lim_{t\to\infty} \varphi(t) = \infty$. From now on, we will write Φ' instead of φ . Therefore, for *N*-function Φ the following holds:

•
$$\Phi(x) > 0$$
, if $x > 0$;

イロト イポト イヨト イヨト

Definition: N-function

A function $\Phi:\mathbb{R}\to\mathbb{R}$ is said to be N-function if it admit the following representation

$$\Phi(x) = \int_{0}^{|x|} \varphi(t) \, dt,$$

where $\varphi(t)$ is defined for $t \ge 0$, non-decreasing, left continuous, satisfying the properties $\varphi(t) > 0$ as t > 0; $\varphi(0) = 0$; $\lim_{t\to\infty} \varphi(t) = \infty$. From now on, we will write Φ' instead of φ . Therefore, for *N*-function Φ the following holds:

•
$$\Phi(x) > 0$$
, if $x > 0$;

Φ is even and convex;;

(日) (同) (三) (三)

Definition: N-function

A function $\Phi:\mathbb{R}\to\mathbb{R}$ is said to be N-function if it admit the following representation

$$\Phi(x) = \int_{0}^{|x|} \varphi(t) \, dt,$$

where $\varphi(t)$ is defined for $t \ge 0$, non-decreasing, left continuous, satisfying the properties $\varphi(t) > 0$ as t > 0; $\varphi(0) = 0$; $\lim_{t\to\infty} \varphi(t) = \infty$. From now on, we will write Φ' instead of φ . Therefore, for *N*-function Φ the following holds:

- $\Phi(x) > 0$, if x > 0;
- Φ is even and convex;;

•
$$\lim_{x\to 0} \frac{\Phi(x)}{x} = 0$$
, $\lim_{x\to\infty} \frac{\Phi(x)}{x} = +\infty$.

(日) (四) (日) (日) (日)

Definition: Complimentary N-function

Let Φ be an *N*-function, the function given by

$$\Psi(x) = \int_{0}^{x} (\Phi')^{-1}(t) dt$$
, where $(\Phi')^{-1}(x) = \sup_{\Phi'(t) \leq x} t$,

is called *complementary* for Φ .

イロト 不得下 イヨト イヨト

4 / 16

Let $\Gamma = (V, E)$ be connected infinite graph of bounded degree (with no self-loops), where V is the vertex set, and E is the edge set. The notation $x \sim y$ stands for a couple (x, y) of adjacent vertices, $(x, y) = e \in E$.

Now given a function $f: S \cup \partial S \to \mathbb{R}$, where $S \subset V$ and $\partial S = \bigcup_{x \in S} \{y \in V \setminus S \mid y \sim x\}$, we introduce a list of definitions

イロト イポト イヨト イヨト 二日

The classical definition of harmonic function f(x) on graph requires that the equation

$$f(x) = \frac{1}{\deg(x)} \sum_{y \sim x} f(y)$$

holds at every x. It is clear that the mentioned condition just means

$$\sum_{y \sim x} (f(y) - f(x)) = 0$$

This one is called the discreet laplacian

$$\Delta f(x) = \sum_{x \sim y} (f(y) - f(x))$$

イロト 不得下 イヨト イヨト

6 / 16

Φ-Harmonic Functions

Definition: Φ -Laplacian

The operator $\mathbb{R}^{S\cup\partial S} \xrightarrow{\Delta_{\Phi}} \mathbb{R}^{S\cup\partial S}$, defined by

$$\Delta_{\Phi}f(x) = \sum_{x \sim y} \Phi'(f(y) - f(x))$$

is called Φ -laplacian.

Definition: Φ-Harmonic functions

A function f is said to be Φ -harmonic in S, if $\Delta_{\Phi}f(x) = 0$ holds far all $x \in S$. We denote by $\mathcal{H}^{\Phi}(S)$ the set of all such functions.

7 / 16

(日) (四) (日) (日) (日)

Φ -Harmonic Functions

Introduce the functional $\mathbb{R}^{S\cup\partial S} \xrightarrow{\rho} \mathbb{R}^{\geq 0}$ as the following equation

$$\rho(f) = \sum_{x \in S} \sum_{y \sim x} \Phi(f(y) - f(x))$$

Below we will use the notation

$$\langle f, g \rangle(x, y) = \Phi'(f(y) - f(x))(g(y) - g(x)).$$

Given a couple of function defined in S, put

$$\langle \Delta_{\Phi} h, f \rangle = \sum_{x \in S} \sum_{y \sim x} \langle h, f \rangle (x, y)$$

Roman Panenko

イロト イロト イヨト イヨト 三日

Definition: Weak harmonicity

We say that a function h is weakly Φ -harmonic if $\langle \Delta_{\Phi} h, f \rangle = 0$ for all $f: S \cup \partial S \to \mathbb{R}$ such that $f|_{\partial S} = 0$.

The following lemma reveals relations between two definitions of Φ -harmonicity above.

Lemma 1

Let $S \subset V$ be a finite set. Then property to be Φ -harmonic in a weak sense is equivalent to Φ -harmonicity. Put it otherwise, $\Delta_{\Phi} f = 0$ if and only if $\langle \Delta_{\Phi} f, g \rangle = 0$ for all $g: S \cup \partial S \to \mathbb{R}$ such that $g|_{\partial S} = 0$.

9 / 16

(日) (同) (三) (三)

Now we can clarify the role played by the functional ρ mentioned above.

Lemma 2

Suppose $S \subset V$ is a finite set. The equation $\Delta_{\Phi} f = 0$ holds if and only if f minimizes $\rho(g)$ over the set $M(f) = \{g \colon S \cup \partial S \to \mathbb{R} \mid g|_{\partial S} = f|_{\partial S}\}$

イロト イポト イラト イラト

Suppose S is a finite set. Let $\{f_i\}$ be a sequence of functions in $S \cup \partial S$, which converges pointwise to a function f, then it is not hard to see

$$\rho(f_i) \to \rho(f), \ \Delta_{\Phi} f_i(x) \to \Delta_{\Phi} f(x)$$

Theorem 1

Let S be finite. Given an arbitrary function f in ∂S , there is a unique function h in $S \cup \partial S$ such that h is Φ -harmonic in S and $h|_{\partial S} = f$.

イベト イモト イモト

Definition: Super(Sub)harmonisity

We say that h is Φ -superharmonic (subharmonic) in U if $\Delta_{\Phi}h(x) \leq 0$ (resp. $\Delta_{\Phi}h(x) \leq 0$) at every point $x \in U$. It is not hard to show that this condition is equivalent to

$$\langle \Delta_{\Phi} h, \, f
angle \geq 0$$
 (resp. ≤ 0)

for all $f: U \cup \partial U \to \mathbb{R}^+$ such that $f|_{\partial U} = 0$ and f has finite support.

イベト イラト イラト

Theorem 2

Let f be Φ -superharmonic and g be Φ -subharmonic in a finite set S such that $f \ge g$ in ∂S . Then $f \ge g$ in S.

Corollary

Suppose f and g are Φ -harmonic functions in a finite set S such that $f|_{\partial S} = g|_{\partial S}$. Then f = g in S.

< 回 > < 三 > < 三 >

Henceforth $U \subset V$ is an arbitrary set needed not be finite.

Theorem 3: Harnack's inequality

Let Φ and Ψ be a couple of complementary N-functions, $h: U \cup \partial U \to \mathbb{R}^+$ is Φ -superharmonic in U. Then the following estimation holds at every point $x \in U$

 $\max_{y \sim x} h(y) \leq [\Psi'(\deg(x)) + 1]h(x)$

イベト イラト イラト

Φ-Harmonic Functions

Lemma 3

Let $\{S_i\}$ be an increasing sequence of finite connected subset of V, and let $U = \bigcup_i S_i$. Suppose $\{h_i\}$ is a sequence of functions in $U \cup \partial U$ such that $h_i(x) \to h(x) < \infty$ for all $x \in U \cup \partial U$. If h_i is Φ -harmonic (resp. Φ -superharmonic, Φ -subharmonic) in every S_i , then h is Φ -harmonic (resp. Φ -superharmonic, Φ -subharmonic) in U.

Theorem 4: Harnack's principle

Let S_i and U be as above . Let $\{h_i\}$ be an increasing sequence of functions in $U \cup \partial U$. If h_i is Φ -harmonic (or Φ -superharmonic) in every S_i , then either $h_i(x) \to \infty$ for every $x \in U$, or $h_i(x) \to h(x)$ for all $x \in U$ and h— Φ -harmonic (resp. Φ -superharmonic) in U.

15 / 16

Φ -Harmonic Functions

Thank you for your attention!

イロト イロト イヨト イヨト 三日