Φ-Harmonic Functions on Graphs

Roman Panenko

Novosibirsk, August, 24, 2016

Let Φ be a function with some special properties. Properly speaking, it is an N-function. In our talk we will consider a number of aspects of Φ-harmonic analysis on graphs. In particular, we will introduce the key definitions and will reveal that the ones in question are well-defined. Also we will give an overview of our results that bring discrete analogs of classical theorems for harmonic function in the usual sense: uniqueness theorem, Harnack's inequality, Harnack's principle. Our work generalizes results obtained in:Holopainen, Ilkka, and Soardi, Paolo M.. "p-harmonic functions on graphs and manifolds Manuscripta mathematica 94.1 (1997): 95-110.

N-functions

Definition: N-function

A function $\Phi: \mathbb{R} \rightarrow \mathbb{R}$ is said to be N-function if it admit the following representation

$$
\Phi(x)=\int_{0}^{|x|} \varphi(t) d t
$$

where $\varphi(t)$ is defined for $t \geqslant 0$, non-decreasing, left continuous, satisfying the properties $\varphi(t)>0$ as $t>0 ; \varphi(0)=0 ; \lim _{t \rightarrow \infty} \varphi(t)=\infty$. From now on, we will write Φ^{\prime} instead of φ. Therefore, for N-function Φ the following holds:

N-functions

Definition: N-function

A function $\Phi: \mathbb{R} \rightarrow \mathbb{R}$ is said to be N-function if it admit the following representation

$$
\Phi(x)=\int_{0}^{|x|} \varphi(t) d t
$$

where $\varphi(t)$ is defined for $t \geqslant 0$, non-decreasing, left continuous, satisfying the properties $\varphi(t)>0$ as $t>0 ; \varphi(0)=0 ; \lim _{t \rightarrow \infty} \varphi(t)=\infty$. From now on, we will write Φ^{\prime} instead of φ. Therefore, for N-function Φ the following holds:

- $\Phi(x)>0$, if $x>0$;

N-functions

Definition: N-function

A function $\Phi: \mathbb{R} \rightarrow \mathbb{R}$ is said to be N-function if it admit the following representation

$$
\Phi(x)=\int_{0}^{|x|} \varphi(t) d t
$$

where $\varphi(t)$ is defined for $t \geqslant 0$, non-decreasing, left continuous, satisfying the properties $\varphi(t)>0$ as $t>0 ; \varphi(0)=0 ; \lim _{t \rightarrow \infty} \varphi(t)=\infty$. From now on, we will write Φ^{\prime} instead of φ. Therefore, for N-function Φ the following holds:

- $\Phi(x)>0$, if $x>0$;
- Φ is even and convex;;

N-functions

Definition: N-function

A function $\Phi: \mathbb{R} \rightarrow \mathbb{R}$ is said to be N-function if it admit the following representation

$$
\Phi(x)=\int_{0}^{|x|} \varphi(t) d t
$$

where $\varphi(t)$ is defined for $t \geqslant 0$, non-decreasing, left continuous, satisfying the properties $\varphi(t)>0$ as $t>0 ; \varphi(0)=0 ; \lim _{t \rightarrow \infty} \varphi(t)=\infty$. From now on, we will write Φ^{\prime} instead of φ. Therefore, for N-function Φ the following holds:

- $\Phi(x)>0$, if $x>0$;
- Φ is even and convex;;
- $\lim _{x \rightarrow 0} \frac{\Phi(x)}{x}=0, \lim _{x \rightarrow \infty} \frac{\Phi(x)}{x}=+\infty$.

N-functions

Definition: Complimentary N-function
Let Φ be an N-function, the function given by

$$
\Psi(x)=\int_{0}^{x}\left(\Phi^{\prime}\right)^{-1}(t) d t, \quad \text { where }\left(\Phi^{\prime}\right)^{-1}(x)=\sup _{\Phi^{\prime}(t) \leq x} t
$$

is called complementary for Φ.

Ф-Harmonic Functions

Let $\Gamma=(V, E)$ be connected infinite graph of bounded degree (with no self-loops), where V is the vertex set, and E is the edge set. The notation $x \sim y$ stands for a couple (x, y) of adjacent vertices, $(x, y)=e \in E$.

Now given a function $f: S \cup \partial S \rightarrow \mathbb{R}$, where $S \subset V$ and $\partial S=\bigcup_{x \in S}\{y \in V \backslash S \mid y \sim x\}$, we introduce a list of definitions

The classical definition of harmonic function $f(x)$ on graph requires that the equation

$$
f(x)=\frac{1}{\operatorname{deg}(x)} \sum_{y \sim x} f(y)
$$

holds at every x. It is clear that the mentioned condition just means

$$
\sum_{y \sim x}(f(y)-f(x))=0
$$

This one is called the discreet laplacian

$$
\Delta f(x)=\sum_{x \sim y}(f(y)-f(x))
$$

Φ-Harmonic Functions

Definition: Φ-Laplacian
The operator $\mathbb{R}^{S \cup \partial S} \xrightarrow{\Delta_{\oplus}} \mathbb{R}^{S \cup \partial S}$, defined by

$$
\Delta_{\Phi} f(x)=\sum_{x \sim y} \Phi^{\prime}(f(y)-f(x))
$$

is called Φ-laplacian.

Definition: Φ-Harmonic functions
A function f is said to be Φ-harmonic in S, if $\Delta_{\Phi} f(x)=0$ holds far all $x \in S$. We denote by $\mathcal{H}^{\Phi}(S)$ the set of all such functions.

Φ-Harmonic Functions

Introduce the functional $\mathbb{R}^{S \cup \partial S} \xrightarrow{\rho} \mathbb{R} \geq 0$ as the following equation

$$
\rho(f)=\sum_{x \in S} \sum_{y \sim x} \Phi(f(y)-f(x))
$$

Below we will use the notation

$$
\langle f, g\rangle(x, y)=\Phi^{\prime}(f(y)-f(x))(g(y)-g(x))
$$

Given a couple of function defined in S, put

$$
\left\langle\Delta_{\Phi} h, f\right\rangle=\sum_{x \in S} \sum_{y \sim x}\langle h, f\rangle(x, y)
$$

Φ-Harmonic Functions

Definition: Weak harmonicity
We say that a function h is weakly Φ-harmonic if $\left\langle\Delta_{\Phi} h, f\right\rangle=0$ for all $f: S \cup \partial S \rightarrow \mathbb{R}$ such that $\left.f\right|_{\partial S}=0$.

The following lemma reveals relations between two definitions of Φ-harmonicity above.

Lemma 1
Let $S \subset V$ be a finite set. Then property to be Φ-harmonic in a weak sense is equivalent to Φ-harmonicity. Put it otherwise, $\Delta_{\phi} f=0$ if and only if $\left\langle\Delta_{\Phi} f, g\right\rangle=0$ for all $g: S \cup \partial S \rightarrow \mathbb{R}$ such that $\left.g\right|_{\partial S}=0$.

Φ-Harmonic Functions

Now we can clarify the role played by the functional ρ mentioned above.

Lemma 2

Suppose $S \subset V$ is a finite set. The equation $\Delta_{\phi} f=0$ holds if and only if f minimizes $\rho(g)$ over the set $M(f)=\left\{g: S \cup \partial S \rightarrow \mathbb{R}|g|_{\partial S}=\left.f\right|_{\partial S}\right\}$

Φ-Harmonic Functions

Suppose S is a finite set. Let $\left\{f_{i}\right\}$ be a sequence of functions in $S \cup \partial S$, which converges pointwise to a function f, then it is not hard to see

$$
\rho\left(f_{i}\right) \rightarrow \rho(f), \Delta_{\Phi} f_{i}(x) \rightarrow \Delta_{\Phi} f(x)
$$

Theorem 1

Let S be finite. Given an arbitrary function f in ∂S, there is a unique function h in $S \cup \partial S$ such that h is Φ-harmonic in S and $\left.h\right|_{\partial S}=f$.

Φ-Harmonic Functions

Definition: Super(Sub)harmonisity
We say that h is Φ-superharmonic (subharmonic) in U if $\Delta_{\Phi} h(x) \leq 0$ (resp. $\Delta_{\Phi} h(x) \leq 0$) at every point $x \in U$.
It is not hard to show that this condition is equivalent to

$$
\left\langle\Delta_{\Phi} h, f\right\rangle \geq 0(\text { resp. } \leq 0)
$$

for all $f: U \cup \partial U \rightarrow \mathbb{R}^{+}$such that $\left.f\right|_{\partial U}=0$ and f has finite support .

Φ-Harmonic Functions

Theorem 2
Let f be Φ-superharmonic and g be Φ-subharmonic in a finite set S such that $f \geq g$ in ∂S. Then $f \geq g$ in S.

Corollary

Suppose f and g are Φ-harmonic functions in a finite set S such that $\left.f\right|_{\partial S}=\left.g\right|_{\partial S}$. Then $f=g$ in S.

Φ-Harmonic Functions

Henceforth $U \subset V$ is an arbitrary set needed not be finite.
Theorem 3: Harnack's inequality
Let Φ and Ψ be a couple of complementary N-functions, $h: U \cup \partial U \rightarrow \mathbb{R}^{+}$is Φ-superharmonic in U. Then the following estimation holds at every point $x \in U$

$$
\max _{y \sim x} h(y) \leq\left[\Psi^{\prime}(\operatorname{deg}(x))+1\right] h(x)
$$

Φ-Harmonic Functions

Lemma 3

Let $\left\{S_{i}\right\}$ be an increasing sequence of finite connected subset of V, and let $U=\bigcup_{i} S_{i}$. Suppose $\left\{h_{i}\right\}$ is a sequence of functions in $U \cup \partial U$ such that $h_{i}(x) \rightarrow h(x)<\infty$ for all $x \in U \cup \partial U$. If h_{i} is Φ-harmonic (resp. Φ-superharmonic, Φ-subharmonic) in every S_{i}, then h is Φ-harmonic (resp. Φ-superharmonic, Φ-subharmonic) in U.

Theorem 4: Harnack's principle

Let S_{i} and U be as above. Let $\left\{h_{i}\right\}$ be an increasing sequence of functions in $U \cup \partial U$. If h_{i} is Φ-harmonic (or Φ-superharmonic) in every S_{i}, then either $h_{i}(x) \rightarrow \infty$ for every $x \in U$, or $h_{i}(x) \rightarrow h(x)$ for all $x \in U$ and $h-\Phi$-harmonic (resp. Φ-superharmonic) in U.

Ф-Harmonic Functions

Thank you for your attention!

