Small cycles in the Bubble-Sort graph

Simonova Anna

Graphs and Groups, Spectra and Symmetries

NSU, 2016

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

We investigate the Bubble-Sort graph BS_n , $n \ge 2$, that is the Cayley graph on the symmetric group Sym_n generated by transpositions from the set $t = \{t_{ii+1} \in Sym_n, 1 \le i \le n-1\}$. In 2006 Yosuke Kikuchia and Toru Arakib have shown [1] that BS_n , $n \ge 4$, contains all cycles of even length I, where $4 \le I \le n!$.

However a characterization of these cycles has not been done.

 Yosuke Kikuchia, Toru Arakib. Edge-bipancyclicity and edge-fault-tolerant bipancyclicity of bubble-sort graphs // Information Processing Letters Volume 100, Issue 2, 31 October 2006, Pages 52–59.

Definitions

The Symmetric group Sym_n is the group of all permutations acting on the set $\{1,..,n\}$. $|Sym_n| = n!$

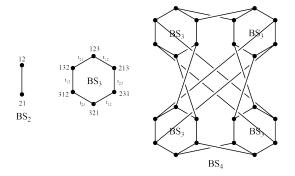
The Bubble-Sort graph $BS_n = Cay(Sym_n, t), n \ge 2$, on the symmetric group Sym_n with the generating set

$$t = \{t_{ii+1} \in Sym_n, 1 \leqslant i \leqslant n-1\},\$$

where t_{ii+1} are 2-cycles interchanging *i*th and (i + 1)th elements of a permutation when multiplied on the right.

ション ふゆ アメリア メリア しょうくしゃ

 BS_n graph is vertex-transitive, connected, bipartite (n-1)-regular graph with diameter $\frac{n(n-1)}{2}$; The graph has n! vertices and $\frac{n(n-1)!}{2}$ edges.



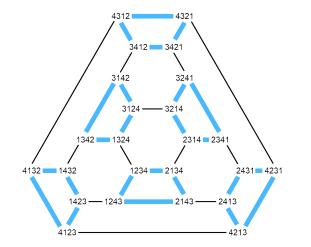
Examples of Bubble-sort graphs BS_2 , BS_3 and BS_4

A sequence of transpositions $C_l = t_{i_0 i_0+1} \dots t_{i_{l-1} i_{l-1}+1}$, where $1 \leq i_j \leq n-1$, and $i_j \neq i_{j+1}$ for any $j \in \{0, \dots, l-1\}$, such that $\pi t_{i_0 i_0+1} \dots t_{i_{l-1} i_{l-1}+1} = \pi$, where $\pi \in Sym_n$, is said to be a *form of a cycle* C_l of length l in the Bubble-Sort graph.

The canonical form C_l of an *l*-cycle is called a form with a lexicographically maximal sequence of indices. For cycles of a form $C_l = t_{ii+1}t_{jj+1}...t_{ii+1}t_{jj+1}$, where l = 2k, and $t_{ii+1}t_{jj+1}$ appears k times, we write $C_l = (t_{ii+1}t_{jj+1})^k$.

ション ふゆ く 山 マ チャット しょうくしゃ

Example: 4-cycles in BS₄ graph



For $C_4 = t_{34}t_{12}t_{34}t_{12}$ the canonical form will be $C_4 = (t_{34}t_{12})^2$

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Theorem 1. Each of the vertices of the Bubble-Sort graph BS_n , $n \ge 4$, belongs to $\frac{(n-2)(n-3)}{2}$ different 4-cycles of the canonical form $C_4 = (t_{ii+1}t_{jj+1})^2$, where $1 \le i < j-1 \le n-1$.

ション ふゆ く 山 マ チャット しょうくしゃ

6-cycles characterization

Theorem 2. Each of the vertices of the Bubble-Sort graph BS_n belongs to (n - 2) 6-cycles of the canonical form

$$C_6^1 = (t_{i+1i+2}t_{ii+1})^3, \ 1 \le i \le n-2, \ n \ge 3;$$
 (1)

to (n-4)(n-3) 6-cycles of the canonical form

$$C_6^2 = (t_{ii+1}t_{i+1i+2})(t_{jj+1})(t_{i+1i+2}t_{ii+1})(t_{jj+1}), \ 1 \leq i < j \leq n-1, \ n \geq 5,$$

and to $\frac{(n-3)(n-4)(n-5)}{6}$ 6-cycles of the canonical forms

$$C_6^3 = (t_{ii+1}t_{jj+1}t_{kk+1})^2, \ k-1 > j > i+1, \ n \ge 6;$$
(3)

$$C_{6}^{4} = (t_{ii+1}t_{jj+1}t_{ii+1}t_{kk+1}t_{jj+1}t_{kk+1}), \ k-1 > j > i+1, \ n \ge 6.$$
(4)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

8-cycles characterization

Teorem 3. Each of the vertices of the Bubble-Sort graph BS_n belongs to 3(n-3) 8-cycles of the canonical form

$$C_8^1 = (t_{i+2i+3}t_{ii+1}t_{i+2i+3})(t_{i+1i+2}t_{ii+1})^2(t_{i+1i+2}),$$
(1)
where $1 \le i < n-3, n \ge 4;$

to (n-3)(n-4) 8-cycles of the canonical form

$$C_8^2 = (t_{i+1i+2}t_{ii+1})^2 (t_{jj+1})(t_{i+1i+2}t_{ii+1})(t_{jj+1}),$$
where $j > i+2$, or $j < i-1$, $n \ge 5$;
$$(2)$$

to (n-5)(n-4) 8-cycles of the canonical form

$$C_8^3 = (t_{i+2i+3}t_{i+1i+2}t_{ii+1})(t_{jj+1})(t_{ii+1}t_{i+1i+2}t_{i+2i+3})(t_{jj+1}),$$
where $j > i+3$, or $j < i-1$, $n \ge 6$,
$$(3)$$

and
$$\frac{(n^4-22n^3+179n^2-662n+1032)}{24}$$
 8-cycles of the canonical form

$$C_8^4 = (t_{ii+1}t_{jj+1}t_{kk+1}t_{mm+1})(t_{\sigma(i)\sigma(i)+1}t_{\sigma(j)\sigma(j)+1}t_{\sigma(k)\sigma(k)+1}t_{mm+1}),$$
(4)
where $\sigma \in S_3$ on the set $\{i, j, k\}, n \ge 8$.

ション ふゆ アメリア メリア しょうくしゃ

The number of 4-, 6- and 8-cycles

Theorem 4. BS_n graph, $n \ge 3$, contains:

 $\frac{(n-2)(n-3)n!}{8} \text{ different cycles of length four,}$ $\frac{n^3-9n^2+29n-30}{3}n! \text{ cycles of length six,}$ $\frac{n^4-22n^3+183n^2-678n+1044}{4}n! \text{ cycles of length 8.}$

The results obtained clearly demonstrate the complexity of a BS_n graph cyclic system. The method used for proving Theorem 1, Theorem 2 and Theorem 3 allows us to estimate and count the number of cycles of length ten, twelve or more passing through the same vertex.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Small cycles in the Bubble-Sort graph

Simonova Anna

Graphs and Groups, Spectra and Symmetries

NSU, 2016

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?