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Cayley Graph Isomorphism Problem
G is a (finite) group, X ⊆ G ⇒ Γ = Cay(G ,X ):
V (Γ) = G and E (Γ) = {(g , xg) | g ∈ G , x ∈ X}

Γ = Cay(G ,X ) and Γ′ = Cay(G ,X ′)

Iso(Γ, Γ′) = {f ∈ Sym(G ) | s f ∈ E (Γ′) for s ∈ E (Γ)}
Aut(Γ) = Iso(Γ, Γ) and Gright ≤ Aut(Γ) ≤ Sym(G )

Cayley Graph Isomorphism Problem (CGIP)
For an explicitly given finite group G and X ,X ′ ⊆ G , find the set
Iso(Γ, Γ′), where Γ = Cay(G ,X ) and Γ′ = Cay(G ,X ′)

Input consists of the multiplication table of G and the sets X ,X ′

Output Iso(Γ, Γ′) is either empty or given by a permutation from
Iso(Γ, Γ′) and some generating set of Aut(Γ)

Note that Iso(Γ, Γ′) is Aut(Γ)-coset in Sym(G ).
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Babai’s algorithm solves CGIP in quasipolynomial time
CGIP ⇒ Group Isomorphism Problem
CGIP for the cyclic groups is solved in polynomial time
(Evdokimov-Ponomarenko, 2003, and Muzychuk, 2004)
CGIP for the CI-groups can be solved in time poly(|Aut(G )|)

Recognition problem for Cayley graph: Whether a given graph
is a Cayley graph over a given group?
Sabidussi’s criterion: For a group G , the graph Γ is a Cayley
graph over G ⇔ the automorphism group Aut(Γ) contains a
regular subgroup isomorphic to G

In general, the recognition problem for Cayley graphs is not
easier than the problem of determining whether a graph
admits a fixed-point-free automorphism, which is NP-complete
(A. Lubiw, 1981)
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Central Cayley Graphs

G is a group, X ⊆ G , and Γ = Cay(G ,X )

Γ is said to be central if X is a normal subset in G ,
i.e., X g = X for every g ∈ G .

Proposition
Any Cayley graph over an abelian group is central

If Γ is a Cayley graph then Gright ≤ Aut(Γ)

If Γ is a central Cayley graph then GleftGright ≤ Aut(Γ)

because h(g , xg) = (hg , xh
−1
hg) = (hg , x ′(hg))

Note that (a) Gleft and Gright centralize each other, and
(b) Gleft ∩ Gright = {hright | h ∈ Z (G )}, so
Z (G ) = 1 ⇒ GleftGright is the direct product of two copies of G .
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Central Cayley Graphs over Almost Simple Groups

S is nonabelian simple group (S ' Inn(S))

G is called an almost simple group, if S ≤ G ≤ Aut(S)

S = Soc(G ) is the socle of G

Proposition
The number of the central Cayley graphs over a symmetric group is
exponential in the size of the group

Indeed, if G = Sym(n), then the number N(n) of the central
Cayley graphs over G is equal to 2p(n), where p(n) is the number of
all partitions of n. Since p(n) is approximately equal to 2

√
n, the

number N(n) is exponential in |G | = n!
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Main Results. Part 1

Theorem 1
For any two central Cayley graphs Γ and Γ′ over an explicitly given
almost simple group G of order n, the set Iso(Γ, Γ′) can be found in
time poly(n).

Corollary
The automorphism group of a central Cayley graph over an
explicitly given almost simple group G of order n can be found in
time poly(n).
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Cayley Representations and Regular Subgroups
Γ = Cay(G ,X ) and Γ′ = Cay(G ,X ′)

IsoCay(Γ, Γ′) = Aut(G ) ∩ Iso(Γ, Γ′)

Γ and Γ′ are called Cayley isomorphic if IsoCay(Γ, Γ′) 6= ∅
Cayley representation of a graph Γ over a group G is a Cayley
graph Cay(G ,X ) isomorphic to Γ

Cayley representations of Γ are equivalent if they are Cayley
isomorphic

A transitive permutation group is called regular if its point
stabilizer is trivial
Given a group G , a regular subgroup of a permutation group is
said to be G -regular, if it is isomorphic to G .

Proposition (Babai, 1975)
There is a one-to-one correspondence between the non-equivalent
Cayley representations of a graph Γ over a group G and the
conjugacy classes of G -regular subgroups of Aut(Γ).
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G -base of a Permutation Group

Definition
Let G be a group and K ≤ Sym(Ω). A set B = {Bi , i ∈ I} of
G -regular subgroups of K is called a G -base of K iff every
G -regular subgroup of K is conjugate in K to exactly one Bi .
Set bG (K ) = |B|.

For Γ = Cay(G ,X ) put bG (Γ) = bG (Aut(Γ))

In this case bG (Γ) ≥ 1 due to Gright ≤ Aut(Γ)

Babai’s argument yields that Γ is CI-graph ⇔ bG (Γ) = 1

CGIP is reducible in time polynomial in bG (Γ) to the problem:
Given a Cayley graph Γ over a group G , find a G -base of Aut(Γ)

8 / 13



G -base of a Permutation Group

Definition
Let G be a group and K ≤ Sym(Ω). A set B = {Bi , i ∈ I} of
G -regular subgroups of K is called a G -base of K iff every
G -regular subgroup of K is conjugate in K to exactly one Bi .
Set bG (K ) = |B|.

For Γ = Cay(G ,X ) put bG (Γ) = bG (Aut(Γ))

In this case bG (Γ) ≥ 1 due to Gright ≤ Aut(Γ)

Babai’s argument yields that Γ is CI-graph ⇔ bG (Γ) = 1

CGIP is reducible in time polynomial in bG (Γ) to the problem:
Given a Cayley graph Γ over a group G , find a G -base of Aut(Γ)

8 / 13



G -base of a Permutation Group

Definition
Let G be a group and K ≤ Sym(Ω). A set B = {Bi , i ∈ I} of
G -regular subgroups of K is called a G -base of K iff every
G -regular subgroup of K is conjugate in K to exactly one Bi .
Set bG (K ) = |B|.

For Γ = Cay(G ,X ) put bG (Γ) = bG (Aut(Γ))

In this case bG (Γ) ≥ 1 due to Gright ≤ Aut(Γ)

Babai’s argument yields that Γ is CI-graph ⇔ bG (Γ) = 1

CGIP is reducible in time polynomial in bG (Γ) to the problem:
Given a Cayley graph Γ over a group G , find a G -base of Aut(Γ)

8 / 13



G -base of a Permutation Group

Definition
Let G be a group and K ≤ Sym(Ω). A set B = {Bi , i ∈ I} of
G -regular subgroups of K is called a G -base of K iff every
G -regular subgroup of K is conjugate in K to exactly one Bi .
Set bG (K ) = |B|.

For Γ = Cay(G ,X ) put bG (Γ) = bG (Aut(Γ))

In this case bG (Γ) ≥ 1 due to Gright ≤ Aut(Γ)

Babai’s argument yields that Γ is CI-graph ⇔ bG (Γ) = 1

CGIP is reducible in time polynomial in bG (Γ) to the problem:
Given a Cayley graph Γ over a group G , find a G -base of Aut(Γ)

8 / 13



Main Results. Part 2

Let Gn stand for the set of central Cayley graphs Γ over an
explicitly given group G of order n with a simple socle and a cyclic
quotient G/Soc(G ).

Theorem 2
For every Γ ∈ Gn, one can find a G -base of Aut(Γ) in time poly(n).
In particular, a full system of pairwise nonequivalent Cayley
representations of Γ can be found within the same time.

A canonical labelling of every graph in Gn can be constructed in
time poly(n).
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Sketch of the Proof. Analysis

G is an almost simple group, S = Soc(G ), X ⊆ G

Γ = Cay(G ,X ) is a central Cayley graph, K = Aut(Γ)

L is the intersection of all non-singleton K -blocks containing e

Then S ≤ L E G (because Γ is central) and we have two cases:

1 L = G ⇒ K is primitive, then
K = Sym(G ), or
The classification of regular subgroups of primitive
permutation groups (Liebeck, Praeger, Saxl, 2010) ⇒ G = S

2 L < G ⇒ K is imprimitive, then
L = {Lk | k ∈ K} is the non-trivial system of imprimitivity
Based on some special equivalence relation on L we set U to
be the union of blocks from L equivalent to L
Then U E G and K is the generalized wreath product w.r.t.
the section U/L (in particular, if U = L, then K ' KL o KL is
the ordinary wreath product)
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Sketch of the Proof. Algorithm

As in many modern algorithm for testing isomorphism the main
tool is the Weisfeiler–Leman algorithm.

Bird’s-eye view of the algorithm

1 Find sections U/L and U ′/L′ of K = Aut(Γ) and K ′ = Aut(Γ′)
by exhaustive search (S ≤ L ≤ U ≤ G and |G/S | ≤ log n)

2 Find Iso(ΓU , Γ′U′), where ΓU and Γ′U′ are the ‘restrictions’ of Γ
and Γ′ to U and U ′ (the special structure of U and U ′)

3 Find Iso(ΓL, Γ′L′), where ΓL and Γ′L′ are the ‘quotients’ of Γ
and Γ′ modulo L and L′ (the Babai algorithm for isomorphism
testing)

4 Output Iso(Γ, Γ′) obtained by ‘gluing’ Iso(ΓU , Γ′U′) and
Iso(ΓL, Γ′L′) (the Babai algorithm for coset intersection)
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Sketch of the Proof. Case of Simple Groups

G is nonabelian simple group, Γ = Cay(G ,X ), K = Aut(Γ)

D(2,G ) = Hol(G ).2 ≤ Sym(G ), where Hol(G ) = G Aut(G )
is extended by the involution g 7→ g−1, g ∈ G .
Z (G ) = 1 and Γ is central ⇒ Gleft × Gright = G Inn(G ) ≤ K

If K 6= Sym(G ), then the O’Nan-Scott Theorem implies that
K ≤ D(2,G )

It follows that |K | is polynomial in |G |, in particular, a G -base
of K can be found in polynomial time
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Last Remarks

Evdokimov, Muzychuk, Ponomarenko, 2016:
For every prime p there is K ≤ Sym(p3) such that bG (K ) ≥ pp−2,
where G is an elementary abelian group of order p3

Note that bG (K ) grows exponentially in the order of G as p grows
On the other hand, the group K cannot be the automorphism
group of any graph.
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