On the spectra of automorphic extensions of finite simple exceptional groups of Lie type

Maria Zvezdina

Sobolev Institute of Mathematics, Novosibirsk
G2S2-2016
$\omega(G)$ - the set of orders of the elements of G, or its spectrum
Groups are isospectral if their spectra coincide.
$h(G)$ - the number of pairwise non-isomorphic groups isospectral to G.
G is recognizable by its spectrum if $h(G)=1$, i.e. for any group H

$$
\omega(H)=\omega(G) \Rightarrow G \simeq H
$$

Recognition by spectrum problem is solved for a group G if we know $h(G)$ (and if $h(G)$ is finite then the groups isospectral to G are determined).

Main goal
To solve recognition problem for all non-abelian finite simple groups.

Main goal
To solve recognition problem for all non-abelian finite simple groups.

Non-abelian finite simple groups:

- 26 sporadic groups;
- alternating groups;
- exceptional groups of Lie type;
- classical groups of Lie type.

Main goal
To solve recognition problem for all non-abelian finite simple groups.

Non-abelian finite simple groups:

- 26 sporadic groups;
- alternating groups;
- exceptional groups of Lie type;
- classical groups of Lie type.

Main result

Recognition problem is solved for all simple exceptional groups of Lie type.

- 1992-1999, Brandl, Shi, Deng:
${ }^{2} B_{2}(q),{ }^{2} G_{2}(q),{ }^{2} F_{4}(q)$ - recognizable
- 2002, Vasil'ev: $G_{2}\left(3^{m}\right)$ - recognizable
- 2005, Vasil'ev, Mazurov, Shi, ... : $F_{4}\left(2^{m}\right)$ - recognizable
- 2010, Kondrat'ev: $E_{8}(q)$ - recognizable
- 2013, Vasil'ev, Staroletov: $G_{2}(q)$ - recognizable
- 1992-1999, Brandl, Shi, Deng:
${ }^{2} B_{2}(q),{ }^{2} G_{2}(q),{ }^{2} F_{4}(q)$ - recognizable
- 2002, Vasil'ev: $G_{2}\left(3^{m}\right)$ - recognizable
- 2005, Vasil'ev, Mazurov, Shi, ... : $F_{4}\left(2^{m}\right)$ - recognizable
- 2010, Kondrat'ev: $E_{8}(q)$ - recognizable
- 2013, Vasil'ev, Staroletov: $G_{2}(q)$ - recognizable

Problem (16.24 Kourovka Notebook)

Does there exist a finite group G isospectral to a finite simple exceptional group S of Lie type, but G is not isomorphic to S ?

- 1992-1999, Brandl, Shi, Deng:
${ }^{2} B_{2}(q),{ }^{2} G_{2}(q),{ }^{2} F_{4}(q)$ - recognizable
- 2002, Vasil'ev: $G_{2}\left(3^{m}\right)$ - recognizable
- 2005, Vasil'ev, Mazurov, Shi, ... : $F_{4}\left(2^{m}\right)$ - recognizable
- 2010, Kondrat'ev: $E_{8}(q)$ - recognizable
- 2013, Vasil'ev, Staroletov: $G_{2}(q)$ - recognizable

Problem (16.24 Kourovka Notebook)

Does there exist a finite group G isospectral to a finite simple exceptional group S of Lie type, but G is not isomorphic to S ?

- 2013, Mazurov: $h\left({ }^{3} D_{4}(2)\right)=\infty$

Remaining groups: ${ }^{3} D_{4}(q), F_{4}(q), E_{6}(q),{ }^{2} E_{6}(q), E_{7}(q)$

Remaining groups: ${ }^{3} D_{4}(q), F_{4}(q), E_{6}(q),{ }^{2} E_{6}(q), E_{7}(q)$
Theorem A. Let S be a finite simple exceptional group of Lie type and $S \neq{ }^{3} D_{4}(2)$. Then a finite group isospectral to S is isomorphic to a group G, such that $S \leq G \leq$ Aut S. In particular, $h(S)$ is finite.

Remaining groups: ${ }^{3} D_{4}(q), F_{4}(q), E_{6}(q),{ }^{2} E_{6}(q), E_{7}(q)$
Theorem A. Let S be a finite simple exceptional group of Lie type and $S \neq{ }^{3} D_{4}(2)$. Then a finite group isospectral to S is isomorphic to a group G, such that $S \leq G \leq$ Aut S. In particular, $h(S)$ is finite.

- 2005, Alekseeva, Kondrat'ev: ${ }^{3} D_{4}(q), F_{4}(q)-$ quasirecognizable
- 2007, Kondrat'ev: $E_{6}(q),{ }^{2} E_{6}(q)$ - quasirecognizable
- 2014, Vasil'ev, Staroletov: $E_{7}(q)$ - quasirecognizable
- 2015, Grechkoseeva: S is recognizable among covers

Remaining groups: $S \in\left\{{ }^{3} D_{4}(q), F_{4}(q), E_{6}(q),{ }^{2} E_{6}(q), E_{7}(q)\right\}$.
If $S \neq{ }^{3} D_{4}(2)$ and $\omega(G)=\omega(S)$, then $S \leq G \leq \operatorname{Aut}(S)$.

Remaining groups: $S \in\left\{{ }^{3} D_{4}(q), F_{4}(q), E_{6}(q),{ }^{2} E_{6}(q), E_{7}(q)\right\}$.
If $S \neq{ }^{3} D_{4}(2)$ and $\omega(G)=\omega(S)$, then $S \leq G \leq \operatorname{Aut}(S)$.
Problem (17.36 Kourovka Notebook). Find all non-abelian finite simple groups S for which there is a finite group G such that $S<G \leqslant$ Aut S и $\omega(G)=\omega(S)$.

Remaining groups: $S \in\left\{{ }^{3} D_{4}(q), F_{4}(q), E_{6}(q),{ }^{2} E_{6}(q), E_{7}(q)\right\}$.
If $S \neq{ }^{3} D_{4}(2)$ and $\omega(G)=\omega(S)$, then $S \leq G \leq \operatorname{Aut}(S)$.
Problem (17.36 Kourovka Notebook). Find all non-abelian finite simple groups S for which there is a finite group G such that $S<G \leqslant$ Aut S и $\omega(G)=\omega(S)$.

Problem. Describe spectra of automorphic extensions of the remaining groups.

Remaining groups: $S \in\left\{{ }^{3} D_{4}(q), F_{4}(q), E_{6}(q),{ }^{2} E_{6}(q), E_{7}(q)\right\}$.
If $S \neq{ }^{3} D_{4}(2)$ and $\omega(G)=\omega(S)$, then $S \leq G \leq \operatorname{Aut}(S)$.
Problem (17.36 Kourovka Notebook). Find all non-abelian finite simple groups S for which there is a finite group G such that $S<G \leqslant$ Aut S и $\omega(G)=\omega(S)$.

Problem. Describe spectra of automorphic extensions of the remaining groups.

- 2015, Grechkoseeva, Zvezdina: ${ }^{3} D_{4}(q), F_{4}(q)$

Remaining groups: $S \in\left\{{ }^{3} D_{4}(q), F_{4}(q), E_{6}(q),{ }^{2} E_{6}(q), E_{7}(q)\right\}$.
If $S \neq{ }^{3} D_{4}(2)$ and $\omega(G)=\omega(S)$, then $S \leq G \leq \operatorname{Aut}(S)$.
Problem (17.36 Kourovka Notebook). Find all non-abelian finite simple groups S for which there is a finite group G such that $S<G \leqslant$ Aut S и $\omega(G)=\omega(S)$.

Problem. Describe spectra of automorphic extensions of the remaining groups.

- 2015, Grechkoseeva, Zvezdina: ${ }^{3} D_{4}(q), F_{4}(q)$
- 2016, Zvezdina: $E_{6}(q),{ }^{2} E_{6}(q), E_{7}(q)$

New results

Notation: $E_{6}^{+}(q)=E_{6}(q)$ and $E_{6}^{-}(q)={ }^{2} E_{6}(q)$ are denoted by $E_{6}^{\varepsilon}(q), \varepsilon \in\{+,-\}$.

New results

Notation: $E_{6}^{+}(q)=E_{6}(q)$ and $E_{6}^{-}(q)={ }^{2} E_{6}(q)$ are denoted by $E_{6}^{\varepsilon}(q), \varepsilon \in\{+,-\}$.

Theorem 1. Let $S=E_{6}^{\varepsilon}(q)$, where q is a power of a prime p, and $S<G \leq$ Aut S. Then $\omega(G)=\omega(S)$ if and only if G is an extension of S by a field automorphism, G / S is a 3 -group, 3 divides $q-\varepsilon 1$, and $p \notin\{2,11\}$.

New results

Notation: $E_{6}^{+}(q)=E_{6}(q)$ and $E_{6}^{-}(q)={ }^{2} E_{6}(q)$ are denoted by $E_{6}^{\varepsilon}(q), \varepsilon \in\{+,-\}$.

Theorem 1. Let $S=E_{6}^{\varepsilon}(q)$, where q is a power of a prime p, and $S<G \leq$ Aut S. Then $\omega(G)=\omega(S)$ if and only if G is an extension of S by a field automorphism, G / S is a 3 -group, 3 divides $q-\varepsilon 1$, and $p \notin\{2,11\}$.

Example. If $S=E_{6}\left(5^{6}\right), S<G \leq$ Aut S and $\omega(G)=\omega(S)$, then $G \simeq S \rtimes\langle\varphi\rangle$, where φ is a field automorphism of S of order 3 . In particular, $h(S)=2$.

New results

Notation: $E_{6}^{+}(q)=E_{6}(q)$ and $E_{6}^{-}(q)={ }^{2} E_{6}(q)$ are denoted by $E_{6}^{\varepsilon}(q), \varepsilon \in\{+,-\}$.

Theorem 1. Let $S=E_{6}^{\varepsilon}(q)$, where q is a power of a prime p, and $S<G \leq$ Aut S. Then $\omega(G)=\omega(S)$ if and only if G is an extension of S by a field automorphism, G / S is a 3-group, 3 divides $q-\varepsilon 1$, and $p \notin\{2,11\}$.

Example. If $S=E_{6}\left(5^{6}\right), S<G \leq$ Aut S and $\omega(G)=\omega(S)$, then $G \simeq S \rtimes\langle\varphi\rangle$, where φ is a field automorphism of S of order 3 . In particular, $h(S)=2$.

Theorem 2. Let $S=E_{7}(q)$, where q is a power of a prime p, and $S<G \leq$ Aut S. Then $\omega(G)=\omega(S)$ if and only if G is an extension of S by a field automorphism, G / S is a 2-group, and $p \notin\{2,13,17\}$.

Recognition problem

- 26 sporadic groups - solved
- alternating groups - solved

Recognition problem

- 26 sporadic groups - solved
- alternating groups - solved
- exceptional groups of Lie type - solved

Recognition problem

- 26 sporadic groups - solved
- alternating groups - solved
- exceptional groups of Lie type - solved
- classical groups of Lie type - almost solved

Recognition problem

- 26 sporadic groups - solved
- alternating groups - solved
- exceptional groups of Lie type - solved
- classical groups of Lie type - almost solved

Theorem B. Let S be a simple exceptional group of Lie type ${ }^{d} X_{n}(q)$, where $q=p^{m}, p$ is a prime. Then $h(S)$ is as indicated in Table 1. If $1<h(S)<\infty$, then a finite group is isospectral to S if and only if it is isomorphic to a group G such that $S \leq G \leq S \rtimes\langle\varphi\rangle$, where φ is a field automorphism of a group S of the order given in Table 1.
$(m)_{r}$ is the largest power of a prime r dividing an integer m.

Table 1

S	Conditions	$\|\varphi\|$	$h(S)$
${ }^{2} B_{2}(q)$		-	1
${ }^{2} G_{2}(q)$		-	1
${ }^{2} F_{4}(q)$		-	1
$G_{2}(q)$		-	1
$E_{8}(q)$		-	1
${ }^{3} D_{4}(q)$	$p \notin\{2,3,7,11\},(m)_{2}=2^{s}>2$	2^{s}	$s+1$
	$(p \in\{2,3,7,11\}$ or m is odd $)$ and $q \neq 2$	-	1
	$q=2$	-	∞
$F_{4}(q)$	$p \notin\{2,3,7,11\},(m)_{2}=2^{s}>2$	2^{s}	$s+1$
	otherwise	-	1
$E_{6}^{\varepsilon}(q)$	$p \notin\{2,11\}, 3 \mid q-\varepsilon 1,(m)_{3}=3^{s}>3$	3^{s}	$s+1$
	otherwise	-	1
$E_{7}(q)$	$p \notin\{2,13,17\},(m)_{2}=2^{s}>2$	2^{s}	$s+1$
	otherwise	-	1

