On the spectra of automorphic extensions of finite simple exceptional groups of Lie type

Maria Zvezdina

Sobolev Institute of Mathematics, Novosibirsk

G2S2-2016

 $\omega(G)$ — the set of orders of the elements of G, or its spectrum

Groups are isospectral if their spectra coincide.

h(G) — the number of pairwise non-isomorphic groups isospectral to G.

G is recognizable by its spectrum if h(G) = 1, i.e. for any group H

$$\omega(H) = \omega(G) \Rightarrow G \simeq H$$

Recognition by spectrum problem is solved for a group G if we know h(G) (and if h(G) is finite then the groups isospectral to G are determined).

Main goal

To solve recognition problem for all non-abelian finite simple groups.

Main goal

To solve recognition problem for all non-abelian finite simple groups.

Non-abelian finite simple groups:

- 26 sporadic groups;
- alternating groups;
- exceptional groups of Lie type;
- classical groups of Lie type.

Main goal

To solve recognition problem for all non-abelian finite simple groups.

Non-abelian finite simple groups:

- 26 sporadic groups;
- alternating groups;
- exceptional groups of Lie type;
- classical groups of Lie type.

Main result

Recognition problem is solved for all simple exceptional groups of Lie type.

- 1992–1999, Brandl, Shi, Deng:
 ²B₂(q), ²G₂(q), ²F₄(q) recognizable
- 2002, Vasil'ev: $G_2(3^m)$ recognizable
- 2005, Vasil'ev, Mazurov, Shi, ... : $F_4(2^m)$ recognizable
- 2010, Kondrat'ev: $E_8(q)$ recognizable
- 2013, Vasil'ev, Staroletov: $G_2(q)$ recognizable

- 1992–1999, Brandl, Shi, Deng:
 ²B₂(q), ²G₂(q), ²F₄(q) recognizable
- 2002, Vasil'ev: $G_2(3^m)$ recognizable
- 2005, Vasil'ev, Mazurov, Shi, ... : $F_4(2^m)$ recognizable
- 2010, Kondrat'ev: $E_8(q)$ recognizable
- 2013, Vasil'ev, Staroletov: $G_2(q)$ recognizable

Problem (16.24 Kourovka Notebook)

Does there exist a finite group G isospectral to a finite simple exceptional group S of Lie type, but G is not isomorphic to S?

- 1992–1999, Brandl, Shi, Deng: ²B₂(q), ²G₂(q), ²F₄(q) — recognizable
- 2002, Vasil'ev: $G_2(3^m)$ recognizable
- 2005, Vasil'ev, Mazurov, Shi, ... : $F_4(2^m)$ recognizable
- 2010, Kondrat'ev: $E_8(q)$ recognizable
- 2013, Vasil'ev, Staroletov: $G_2(q)$ recognizable

Problem (16.24 Kourovka Notebook)

Does there exist a finite group G isospectral to a finite simple exceptional group S of Lie type, but G is not isomorphic to S?

• 2013, Mazurov:
$$h(^{3}D_{4}(2)) = \infty$$

Theorem A. Let S be a finite simple exceptional group of Lie type and $S \neq {}^{3}D_{4}(2)$. Then a finite group isospectral to S is isomorphic to a group G, such that $S \leq G \leq \text{Aut } S$. In particular, h(S) is finite.

Theorem A. Let S be a finite simple exceptional group of Lie type and $S \neq {}^{3}D_{4}(2)$. Then a finite group isospectral to S is isomorphic to a group G, such that $S \leq G \leq \text{Aut } S$. In particular, h(S) is finite.

- 2005, Alekseeva, Kondrat'ev: ${}^{3}D_{4}(q)$, $F_{4}(q)$ quasirecognizable
- 2007, Kondrat'ev: $E_6(q)$, ${}^2E_6(q)$ quasirecognizable
- 2014, Vasil'ev, Staroletov: $E_7(q)$ quasirecognizable
- 2015, Grechkoseeva: S is recognizable among covers

If $S \neq {}^{3}D_{4}(2)$ and $\omega(G) = \omega(S)$, then $S \leq G \leq \operatorname{Aut}(S)$.

If $S \neq {}^{3}D_{4}(2)$ and $\omega(G) = \omega(S)$, then $S \leq G \leq \operatorname{Aut}(S)$.

Problem (17.36 Kourovka Notebook). Find all non-abelian finite simple groups S for which there is a finite group G such that $S < G \leq \text{Aut } S$ in $\omega(G) = \omega(S)$.

If $S \neq {}^{3}D_{4}(2)$ and $\omega(G) = \omega(S)$, then $S \leq G \leq \operatorname{Aut}(S)$.

Problem (17.36 Kourovka Notebook). Find all non-abelian finite simple groups S for which there is a finite group G such that $S < G \leq \text{Aut } S$ in $\omega(G) = \omega(S)$.

Problem. Describe spectra of automorphic extensions of the remaining groups.

If $S \neq {}^{3}D_{4}(2)$ and $\omega(G) = \omega(S)$, then $S \leq G \leq \operatorname{Aut}(S)$.

Problem (17.36 Kourovka Notebook). Find all non-abelian finite simple groups S for which there is a finite group G such that $S < G \leq \text{Aut } S$ in $\omega(G) = \omega(S)$.

Problem. Describe spectra of automorphic extensions of the remaining groups.

• 2015, Grechkoseeva, Zvezdina: ${}^{3}D_{4}(q)$, $F_{4}(q)$

If $S \neq {}^{3}D_{4}(2)$ and $\omega(G) = \omega(S)$, then $S \leq G \leq \operatorname{Aut}(S)$.

Problem (17.36 Kourovka Notebook). Find all non-abelian finite simple groups S for which there is a finite group G such that $S < G \leq \text{Aut } S$ in $\omega(G) = \omega(S)$.

Problem. Describe spectra of automorphic extensions of the remaining groups.

- 2015, Grechkoseeva, Zvezdina: ${}^{3}D_{4}(q)$, $F_{4}(q)$
- 2016, Zvezdina: *E*₆(*q*), ²*E*₆(*q*), *E*₇(*q*)

Notation: $E_6^+(q) = E_6(q)$ and $E_6^-(q) = {}^2E_6(q)$ are denoted by $E_6^{\varepsilon}(q)$, $\varepsilon \in \{+, -\}$.

Notation: $E_6^+(q) = E_6(q)$ and $E_6^-(q) = {}^2E_6(q)$ are denoted by $E_6^{\varepsilon}(q)$, $\varepsilon \in \{+, -\}$.

Theorem 1. Let $S = E_6^{\varepsilon}(q)$, where q is a power of a prime p, and $S < G \leq \text{Aut } S$. Then $\omega(G) = \omega(S)$ if and only if G is an extension of S by a field automorphism, G/S is a 3-group, 3 divides $q - \varepsilon 1$, and $p \notin \{2, 11\}$.

Notation: $E_6^+(q) = E_6(q)$ and $E_6^-(q) = {}^2E_6(q)$ are denoted by $E_6^{\varepsilon}(q)$, $\varepsilon \in \{+, -\}$.

Theorem 1. Let $S = E_6^{\varepsilon}(q)$, where q is a power of a prime p, and $S < G \leq \text{Aut } S$. Then $\omega(G) = \omega(S)$ if and only if G is an extension of S by a field automorphism, G/S is a 3-group, 3 divides $q - \varepsilon 1$, and $p \notin \{2, 11\}$.

Example. If $S = E_6(5^6)$, $S < G \le \text{Aut } S$ and $\omega(G) = \omega(S)$, then $G \simeq S \rtimes \langle \varphi \rangle$, where φ is a field automorphism of S of order 3. In particular, h(S) = 2.

Notation: $E_6^+(q) = E_6(q)$ and $E_6^-(q) = {}^2E_6(q)$ are denoted by $E_6^{\varepsilon}(q)$, $\varepsilon \in \{+, -\}$.

Theorem 1. Let $S = E_6^{\varepsilon}(q)$, where q is a power of a prime p, and $S < G \leq \text{Aut } S$. Then $\omega(G) = \omega(S)$ if and only if G is an extension of S by a field automorphism, G/S is a 3-group, 3 divides $q - \varepsilon 1$, and $p \notin \{2, 11\}$.

Example. If $S = E_6(5^6)$, $S < G \le \text{Aut } S$ and $\omega(G) = \omega(S)$, then $G \simeq S \rtimes \langle \varphi \rangle$, where φ is a field automorphism of S of order 3. In particular, h(S) = 2.

Theorem 2. Let $S = E_7(q)$, where q is a power of a prime p, and $S < G \le \text{Aut } S$. Then $\omega(G) = \omega(S)$ if and only if G is an extension of S by a field automorphism, G/S is a 2-group, and $p \notin \{2, 13, 17\}$.

- 26 sporadic groups solved
- alternating groups solved

- 26 sporadic groups solved
- $\bullet\,$ alternating groups solved
- ${\ensuremath{\, \circ }}$ exceptional groups of Lie type solved

- 26 sporadic groups solved
- alternating groups solved
- exceptional groups of Lie type solved
- classical groups of Lie type almost solved

- 26 sporadic groups solved
- alternating groups solved
- exceptional groups of Lie type solved
- classical groups of Lie type almost solved

Theorem B. Let S be a simple exceptional group of Lie type ${}^{d}X_n(q)$, where $q = p^m$, p is a prime. Then h(S) is as indicated in Table 1. If $1 < h(S) < \infty$, then a finite group is isospectral to S if and only if it is isomorphic to a group G such that $S \leq G \leq S \rtimes \langle \varphi \rangle$, where φ is a field automorphism of a group S of the order given in Table 1.

 $(m)_r$ is the largest power of a prime r dividing an integer m.

Table 1			
S	Conditions	$ \varphi $	h(S)
$^{2}B_{2}(q)$		_	1
$^{2}G_{2}(q)$		_	1
$^{2}F_{4}(q)$		—	1
$G_2(q)$		—	1
$E_8(q)$		—	1
$^{3}D_{4}(q)$	$p \notin \{2, 3, 7, 11\}$, $(m)_2 = 2^s > 2$	2 ^s	s+1
	$(p \in \{2,3,7,11\}$ or m is odd) and $q \neq 2$	_	1
	q = 2	_	∞
$F_4(q)$	$p otin \{2,3,7,11\}$, $(m)_2 = 2^s > 2$	2 ^s	s+1
	otherwise	_	1
$E_6^{\varepsilon}(q)$	$p \notin \{2, 11\}, \ 3 q - \varepsilon 1, \ (m)_3 = 3^s > 3$	3 <i>°</i>	s+1
	otherwise	_	1
<i>E</i> ₇ (<i>q</i>)	$p \notin \{2, 13, 17\}, (m)_2 = 2^s > 2$	2 ^s	s+1
	otherwise	—	1

9/11