On a Characterization of the Grassmann

$$
\text { Graphs } J_{q}(2 d+2, d)
$$

Alexander Gavrilyuk

 USTC (Hefei, China),Krasovskii Institute of Mathematics and Mechanics
(Yekaterinburg, Russia)
based on joint work with Jack Koolen USTC (Hefei, China)

G2S2, Novosibirsk, 2016

The Grassmann graph $J_{q}(n, d)$

- Let $q \geq 2$ be a prime power, $n \geq d \geq 1$ be integers.
- $J_{q}(n, d)$ has as vertices all d-dim. subspaces $U \subseteq \mathbb{F}_{q}^{n}$.
- $U_{1} \sim U_{2}$ iff $\operatorname{dim}\left(U_{1} \cap U_{2}\right)=d-1$.
- $J_{q}(n, d) \cong J_{q}(n, n-d)$, diameter equals $\min (d, n-d)$. \Rightarrow w.l.o.g., we assume $n \geq 2 d$.
- Distance-transitive \Rightarrow Distance-regular graph (DRG). - Q-polynomial.

The Grassmann graph $J_{q}(n, d)$

- Let $q \geq 2$ be a prime power, $n \geq d \geq 1$ be integers.
- $J_{q}(n, d)$ has as vertices all d-dim. subspaces $U \subseteq \mathbb{F}_{q}^{n}$.
- $U_{1} \sim U_{2}$ iff $\operatorname{dim}\left(U_{1} \cap U_{2}\right)=d-1$.
- $J_{q}(n, d) \cong J_{q}(n, n-d)$, diameter equals $\min (d, n-d)$.
\Rightarrow w.l.o.g., we assume $n \geq 2 d$.
- Distance-transitive \Rightarrow Distance-regular graph (DRG).
- Q-polynomial.

Classification problem of Q-DRG

Bannai's problem (early 1980's)
Can we classify the Q-polynomial distance-regular graphs with large diameter?
(Bannai, Ito, Algebraic combinatorics I: Association schemes.)

Q-polinomiality can be recognized from $\iota(\Gamma)$.
Thus, one of the stens towards solution of Bannai's problem is to characterize the known DRGs by their intersection arrays (i.e., to find all DRGs with given $\iota(\Gamma))$.

Classification problem of Q-DRG

Bannai's problem (early 1980's)

Can we classify the Q-polynomial distance-regular graphs with large diameter?
(Bannai, Ito, Algebraic combinatorics I: Association schemes.)

$$
\iota(\Gamma):=\left\{b_{0}, b_{1}, \ldots, b_{D-1} ; c_{1}, c_{2}, \ldots, c_{D}\right\} .
$$

Q-polinomiality can be recognized from $\iota(\Gamma)$.
Thus, one of the steps towards solution of Bannai's problem is to characterize the known DRGs by their intersection arrays (i.e., to find all DRGs with given $\iota(\Gamma)$).

Distance-regular graphs

For a distance-regular graph Γ with diameter D, its intersection array is:

$$
\iota(\Gamma):=\left\{b_{0}, b_{1}, \ldots, b_{D-1} ; c_{1}, c_{2}, \ldots, c_{D}\right\},
$$

where, for \forall pair of vertices x, y with $d(x, y)=i$,
$\left|\Gamma_{1}(y) \cap \Gamma_{i-1}(x)\right|=c_{i},\left|\Gamma_{1}(y) \cap \Gamma_{i}(x)\right|=a_{i},\left|\Gamma_{1}(y) \cap \Gamma_{i+1}(x)\right|=b_{i}$

Γ is regular with valency $b_{0}=\left|\Gamma_{1}(x)\right|, \forall x \in V(\Gamma)$ so that

Distance-regular graphs

For a distance-regular graph Γ with diameter D, its intersection array is:

$$
\iota(\Gamma):=\left\{b_{0}, b_{1}, \ldots, b_{D-1} ; c_{1}, c_{2}, \ldots, c_{D}\right\}
$$

where, for \forall pair of vertices x, y with $d(x, y)=i$,
$\left|\Gamma_{1}(y) \cap \Gamma_{i-1}(x)\right|=c_{i}, \quad\left|\Gamma_{1}(y) \cap \Gamma_{i}(x)\right|=a_{i}, \quad\left|\Gamma_{1}(y) \cap \Gamma_{i+1}(x)\right|=b_{i}$

Γ is regular with valency $b_{0}=\left|\Gamma_{1}(x)\right|, \forall x \in V(\Gamma)$ so that

$$
b_{0}=c_{i}+a_{i}+b_{i} .
$$

Characterization of $J_{q}(n, d)$ by $\iota\left(J_{q}(n, d)\right)$

Theorem (Metsch, 1995)
The Grassmann graph $J_{q}(n, d), d>2$, is characterized by its intersection array with the following possible exceptions:

- $n=2 d$ or $n=2 d+1$,
- $n=2 d+2$ if $q \in\{2,3\}$,
- $n=2 d+3$ if $q=2$.

Some recent progress:

- Van Dam. Koolen (2004): an actual exception for $J_{q}(2 d+1, d)$, the twisted Grassmann graph. odd or large enough.

Characterization of $J_{q}(n, d)$ by $\iota\left(J_{q}(n, d)\right)$

Theorem (Metsch, 1995)
The Grassmann graph $J_{q}(n, d), d>2$, is characterized by its intersection array with the following possible exceptions:

- $n=2 d$ or $n=2 d+1$,
- $n=2 d+2$ if $q \in\{2,3\}$,
- $n=2 d+3$ if $q=2$.

Some recent progress:

- Van Dam, Koolen (2004): an actual exception for $J_{q}(2 d+1, d)$, the twisted Grassmann graph.

Characterization of $J_{q}(n, d)$ by $\iota\left(J_{q}(n, d)\right)$

Theorem (Metsch, 1995)

The Grassmann graph $J_{q}(n, d), d>2$, is characterized by its intersection array with the following possible exceptions:

- $n=2 d$ or $n=2 d+1$,
- $n=2 d+2$ if $q \in\{2,3\}$,
- $n=2 d+3$ if $q=2$.

Some recent progress:

- Van Dam, Koolen (2004): an actual exception for $J_{q}(2 d+1, d)$, the twisted Grassmann graph.
- G., Koolen (2014+): no exceptions for $J_{2}(2 d, d)$, if d is odd or large enough.

Overview of this talk

- Local structure of $J_{q}(n, d)$.
- Local characterization of $J_{q}(n, d)$ by Numata-Cohen.
- Sketch of our characterization of $J_{2}(2 d, d)$.
- The Terwilliger algebra theory.
- What is a problem with $J_{q}(2 d+1, d)$?
- What can we do with $J_{2}(2 d+2, d)$?
- The Hoffman graphs theory.

Local structure of the Grassmann graphs

 $\Gamma_{1}(x)=$ the local graph of a vertex x of a graph Γ.$\Gamma=J_{q}(n, d), U \in \Gamma: \quad U \subset(d+1) \quad$ and $\quad(d-1) \subset U$

$\Gamma_{1}(U)=q$-clique extension of $\left[\begin{array}{c}n-d \\ 1\end{array}\right] \times\left[\begin{array}{l}d \\ 1\end{array}\right]$-lattice

where $\left[\begin{array}{c}n \\ 1\end{array}\right]:=\left(q^{n}-1\right) /(q-1)$.
μ-graph of $x, y($ at distance 2$)=\Gamma_{1}(x) \cap \Gamma_{1}(y)$.
Every μ-graph in the Grassmann graphs $J_{q}(n, d)$ is the $(q+1) \times(q+1)$-lattice.

Local structure of the Grassmann graphs

 $\Gamma_{1}(x)=$ the local graph of a vertex x of a graph Γ.$\Gamma=J_{q}(n, d), U \in \Gamma: \quad U \subset(d+1) \quad$ and $\quad(d-1) \subset U$ $\Gamma_{1}(U)=q$-clique extension of $\left[\begin{array}{c}n-d \\ 1\end{array}\right] \times\left[\begin{array}{c}d \\ 1\end{array}\right]$-lattice
where $\left[\begin{array}{c}n \\ 1\end{array}\right]:=\left(q^{n}-1\right) /(q-1)$.
μ-graph of $x, y($ at distance 2$)=\Gamma_{1}(x) \cap \Gamma_{1}(y)$.
Every μ-graph in the Grassmann graphs $J_{q}(n, d)$ is the $(q+1) \times(q+1)$-lattice.

Local structure of the Grassmann graphs

 $\Gamma_{1}(x)=$ the local graph of a vertex x of a graph Γ.$\Gamma=J_{q}(n, d), U \in \Gamma: \quad U \subset(d+1) \quad$ and $\quad(d-1) \subset U$

$$
\Gamma_{1}(U)=q \text {-clique extension of }\left[\begin{array}{c}
n-d \\
1
\end{array}\right] \times\left[\begin{array}{l}
d \\
d
\end{array}\right] \text {-lattice }
$$

where $\left[\begin{array}{c}n \\ 1\end{array}\right]:=\left(q^{n}-1\right) /(q-1)$.
μ-graph of $x, y($ at distance 2$)=\Gamma_{1}(x) \cap \Gamma_{1}(y)$.
$(q+1) \times(q+1)$-lattice.

Local structure of the Grassmann graphs

 $\Gamma_{1}(x)=$ the local graph of a vertex x of a graph Γ.$\Gamma=J_{q}(n, d), U \in \Gamma:$
$U \subset(d+1) \quad$ and $\quad(d-1) \subset U$
$\Gamma_{1}(U)=q$-clique extension of $\left[\begin{array}{c}n-d \\ 1\end{array}\right] \times\left[\begin{array}{c}d \\ d\end{array}\right]$-lattice
where $\left[\begin{array}{c}n \\ 1\end{array}\right]:=\left(q^{n}-1\right) /(q-1)$.
μ-graph of $x, y($ at distance 2$)=\Gamma_{1}(x) \cap \Gamma_{1}(y)$.
Every μ-graph in the Grassmann graphs $J_{q}(n, d)$ is the $(q+1) \times(q+1)$-lattice.

Local characterization of $J_{q}(n, d)$

Theorem (Numata, Cohen, [BCN, Thm 9.3.8])
Let Γ be a finite connected graph such that

- if $x, y \in \Gamma$ are at distance 2 then
$\Gamma_{1}(x) \cap \Gamma_{1}(y)$ is a lattice,
- if $x, y, z \in \Gamma$ form a coclique then

$$
\Gamma_{1}(x) \cap \Gamma_{1}(y) \cap \Gamma_{1}(z) \text { is a coclique, }
$$

Local characterization of $J_{q}(n, d)$

Theorem (Numata, Cohen, [BCN, Thm 9.3.8])
Let Γ be a finite connected graph such that

- if $x, y \in \Gamma$ are at distance 2 then

$$
\Gamma_{1}(x) \cap \Gamma_{1}(y) \text { is a lattice, }
$$

- if $x, y, z \in \Gamma$ form a coclique then

$$
\Gamma_{1}(x) \cap \Gamma_{1}(y) \cap \Gamma_{1}(z) \text { is a coclique, }
$$

Then Γ is either a clique, or a Johnson graph, or the folded Johnson graph $J(2 d, d)$, or a Grassmann graph over a finite field.

Overview of this talk

- Local structure of $J_{q}(n, d)$.
- Local characterization of $J_{q}(n, d)$ by Numata-Cohen.
- Sketch of our characterization of $J_{2}(2 d, d)$.
- The Terwilliger algebra theory.
- What is a problem with $J_{q}(2 d+1, d)$?
- What can we do with $J_{2}(2 d+2, d)$?
- The Hoffman graphs theory.

Some recent progress

Theorem (G., Koolen, 2014+)
The Grassmann graph $J_{2}(2 d, d), d>2$, is characterized by its intersection array, if at least one of the following holds:

- the diameter d is odd,
- the diameter d is large enough.

Proof:

Suppose that $\iota(\Gamma)=\iota\left(J_{2}(2 d, d)\right)$.
(1) The Terwilliger algebra theory to derive some local properties of Γ.
(2) The Hoffman graphs theory to determine the local
graphs of Γ.
(3) The Numata-Cohen characterization.

Some recent progress

Theorem (G., Koolen, 2014+)
The Grassmann graph $J_{2}(2 d, d), d>2$, is characterized by its intersection array, if at least one of the following holds:

- the diameter d is odd,
- the diameter d is large enough.

Proof: Suppose that $\iota(\Gamma)=\iota\left(J_{2}(2 d, d)\right)$.
(1) The Terwilliger algebra theory to derive some local properties of Γ.
(2) The Hoffman graphs theory to determine the local graphs of Γ.
(3) The Numata-Cohen characterization.

Sketch of the proof

Suppose that $\iota(\Gamma)=\iota\left(J_{q}(2 d, d)\right)$.

- Use the Terwilliger algebra theory to show that the local graphs of Γ are cospectral to the local graphs of $J_{q}(2 d, d)($ for any $q)$.

- Use the Terwilliger algebra theory to show that the μ-graphs of Γ are the same as of $J_{2}(2 d, d)$, if d is odd.
- Apply the Hoffman graphs theory to see that Γ has the same local graphs as $J_{2}(2 d, d)$, if d is large enough.
- Some combinatorics to apply the Numata-Cohen theorem.

Sketch of the proof

Suppose that $\iota(\Gamma)=\iota\left(J_{q}(2 d, d)\right)$.

- Use the Terwilliger algebra theory to show that the local graphs of Γ are cospectral to the local graphs of $J_{q}(2 d, d)($ for any $q)$.

Suppose further that $q=2$.

- Use the Terwilliger algebra theory to show that the μ-graphs of Γ are the same as of $J_{2}(2 d, d)$, if d is odd.
- Apply the Hoffman graphs theory to see that Γ has the same local graphs as $J_{2}(2 d, d)$, if d is large enough.
- Some combinatorics to apply the Numata-Cohen theorem.

Sketch of the proof

Suppose that $\iota(\Gamma)=\iota\left(J_{q}(2 d, d)\right)$.

- Use the Terwilliger algebra theory to show that the local graphs of Γ are cospectral to the local graphs of $J_{q}(2 d, d)($ for any $q)$.

Suppose further that $q=2$.

Sketch of the proof

Suppose that $\iota(\Gamma)=\iota\left(J_{q}(2 d, d)\right)$.

- Use the Terwilliger algebra theory to show that the local graphs of Γ are cospectral to the local graphs of $J_{q}(2 d, d)($ for any $q)$.

Suppose further that $q=2$.

- Use the Terwilliger algebra theory to show that the μ-graphs of Γ are the same as of $J_{2}(2 d, d)$, if d is odd.
- Apply the Hoffman graphs theory to see that Γ has the same local graphs as $J_{2}(2 d, d)$, if d is large enough.
- Some combinatorics to apply the Numata-Cohen
theorem.

Sketch of the proof

Suppose that $\iota(\Gamma)=\iota\left(J_{q}(2 d, d)\right)$.

- Use the Terwilliger algebra theory to show that the local graphs of Γ are cospectral to the local graphs of $J_{q}(2 d, d)($ for any $q)$.

Suppose further that $q=2$.

- Use the Terwilliger algebra theory to show that the μ-graphs of Γ are the same as of $J_{2}(2 d, d)$, if d is odd.
- Apply the Hoffman graphs theory to see that Γ has the same local graphs as $J_{2}(2 d, d)$, if d is large enough.
- Some combinatorics to apply the Numata-Cohen theorem.

Sketch of the proof

Suppose that $\iota(\Gamma)=\iota\left(J_{q}(2 d, d)\right)$.

- Use the Terwilliger algebra theory to show that the local graphs of Γ are cospectral to the local graphs of $J_{q}(2 d, d)($ for any $q)$.

Suppose further that $q=2$.

- Use the Terwilliger algebra theory to show that the μ-graphs of Γ are the same as of $J_{2}(2 d, d)$, if d is odd.
- Apply the Hoffman graphs theory to see that Γ has the same local graphs as $J_{2}(2 d, d)$, if d is large enough.
- Some combinatorics to apply the Numata-Cohen theorem.

Overview of this talk

- Local structure of $J_{q}(n, d)$.
- Local characterization of $J_{q}(n, d)$ by Numata-Cohen.
- Sketch of our characterization of $J_{2}(2 d, d)$.
- The Terwilliger algebra theory.
- What is a problem with $J_{q}(2 d+1, d)$?
- What can we do with $J_{2}(2 d+2, d)$?
- The Hoffman graphs theory.

Intersection numbers

Let Γ be a DRG.
Let x, y be any pair of vertices of Γ with $d(x, y)=k$. Then the intersection numbers of Γ

$$
p_{i j}^{k}:=\left|\Gamma_{i}(x) \cap \Gamma_{j}(y)\right|=\left|\Gamma_{j}(x) \cap \Gamma_{i}(y)\right|
$$

do not depend on the choice of $x, y, \forall 0 \leq i, j, k \leq D(\Gamma)$.

Note that $c_{i}=p_{1, i-1}^{i}, a_{i}=p_{1, i}^{i}, b_{i}=p_{1, i+1}^{i}$.

Triple intersection numbers

Let Γ be a Q-polynomial DRG with diameter $D \geq 3$. Fix a triple of vertices x, y, z such that $x \sim y, x \sim z$. Denote a triple intersection number

Terwilliger (1995) and Dickie (1996) showed that for $i \geq 2$
where $\delta=d(y, z) \in\{1,2\}$, and $\kappa_{i, \delta}$ and τ_{i} are real scalars that do not depend on x, y, z.

Triple intersection numbers

Let Γ be a Q-polynomial DRG with diameter $D \geq 3$. Fix a triple of vertices x, y, z such that $x \sim y, x \sim z$. Denote a triple intersection number

$$
[\ell, m, n]:=[\ell, m, n]_{x, y, z}=\left|\Gamma_{\ell}(x) \cap \Gamma_{m}(y) \cap \Gamma_{n}(z)\right|
$$

Terwilliger (1995) and Dickie (1996) showed that for $i \geq 2$
where $\delta=d(y, z) \in\{1,2\}$, and $\kappa_{i, \delta}$ and τ_{i} are real scalars that do not depend on x, y, z.

Triple intersection numbers

Let Γ be a Q-polynomial DRG with diameter $D \geq 3$. Fix a triple of vertices x, y, z such that $x \sim y, x \sim z$. Denote a triple intersection number

$$
[\ell, m, n]:=[\ell, m, n]_{x, y, z}=\left|\Gamma_{\ell}(x) \cap \Gamma_{m}(y) \cap \Gamma_{n}(z)\right|
$$

Terwilliger (1995) and Dickie (1996) showed that for $i \geq 2$

$$
[i, i-1, i-1]=\kappa_{i, \delta}[1,1,1]+\tau_{i}
$$

where $\delta=d(y, z) \in\{1,2\}$, and $\kappa_{i, \delta}$ and τ_{i} are real scalars that do not depend on x, y, z.

Triple intersection numbers

In the same manner, one can show that

$$
[i, i+1, i+1]=\sigma_{i, \delta}[1,1,1]+\rho_{i}
$$

where $\delta=d(y, z) \in\{1,2\}$, and $\sigma_{i, \delta}$ and ρ_{i} are real scalars that do not depend on x, y, z.

Bose-Mesner algebra

- Let Γ be a DRG with diameter D and on v vertices.
- Define the distance- i matrix A_{i} of Γ :

$$
\left(A_{i}\right)_{x, y}:=\left\{\begin{array}{l}
1 \text { if } d(x, y)=i \\
0 \text { if } d(x, y) \neq i
\end{array}\right.
$$

- A_{1} - the adjacency matrix of $\Gamma, A_{0}=I$.
- One has:

$$
\begin{gathered}
A_{i} A_{j}=A_{j} A_{i}=\sum_{k=0}^{D} p_{i j}^{k} A_{k} \\
A_{1} A_{i}=b_{i-1} A_{i-1}+a_{i} A_{i}+c_{i+1} A_{i+1}
\end{gathered}
$$

where $p_{i j}^{k}$ are the intersection numbers.

- The Bose-Mesner algebra $\mathcal{M} \subseteq$

Bose-Mesner algebra

- Let Γ be a DRG with diameter D and on v vertices.
- Define the distance- i matrix A_{i} of Γ :

$$
\left(A_{i}\right)_{x, y}:=\left\{\begin{array}{l}
1 \text { if } d(x, y)=i \\
0 \text { if } d(x, y) \neq i
\end{array}\right.
$$

- A_{1} - the adjacency matrix of $\Gamma, A_{0}=I$.
- One has:

$$
\begin{gathered}
A_{i} A_{j}=A_{j} A_{i}=\sum_{k=0}^{D} p_{i j}^{k} A_{k} \\
A_{1} A_{i}=b_{i-1} A_{i-1}+a_{i} A_{i}+c_{i+1} A_{i+1}
\end{gathered}
$$

where $p_{i j}^{k}$ are the intersection numbers.

- The Bose-Mesner algebra $\mathcal{M} \subseteq \mathbb{C}^{v \times v}$ is the matrix algebra over \mathbb{C} generated by $A_{0}=I, A_{1}, \ldots, A_{D}$.

Terwilliger algebra

Fix any vertex $x \in V(\Gamma)$.
For $0 \leq i \leq D$, denote by $E_{i}^{*}:=E_{i}^{*}(x)$ a diagonal matrix with rows and columns indexed by $V(\Gamma)$, and defined by

$$
\left(E_{i}^{*}\right)_{y, y}:=\left\{\begin{array}{l}
1 \text { if } d(x, y)=i, \\
0 \text { if } d(x, y) \neq i .
\end{array}\right.
$$

The dual Bose-Mesner algebra (w.r.t. x)

The Terwilliger (or subconstituent) algebra (w.r.t. x)

Terwilliger algebra

Fix any vertex $x \in V(\Gamma)$.
For $0 \leq i \leq D$, denote by $E_{i}^{*}:=E_{i}^{*}(x)$ a diagonal matrix with rows and columns indexed by $V(\Gamma)$, and defined by

$$
\left(E_{i}^{*}\right)_{y, y}:=\left\{\begin{array}{l}
1 \text { if } d(x, y)=i, \\
0 \text { if } d(x, y) \neq i .
\end{array}\right.
$$

The dual Bose-Mesner algebra (w.r.t. x)

$$
\mathcal{M}^{*}:=\mathcal{M}^{*}(x)=\operatorname{span}\left\{E_{0}^{*}, E_{1}^{*}, \ldots, E_{D}^{*}\right\} .
$$

The Terwilliger (or subconstituent) algebra (w.r.t. x)

Terwilliger algebra

Fix any vertex $x \in V(\Gamma)$.
For $0 \leq i \leq D$, denote by $E_{i}^{*}:=E_{i}^{*}(x)$ a diagonal matrix with rows and columns indexed by $V(\Gamma)$, and defined by

$$
\left(E_{i}^{*}\right)_{y, y}:=\left\{\begin{array}{l}
1 \text { if } d(x, y)=i, \\
0 \text { if } d(x, y) \neq i .
\end{array}\right.
$$

The dual Bose-Mesner algebra (w.r.t. x)

$$
\mathcal{M}^{*}:=\mathcal{M}^{*}(x)=\operatorname{span}\left\{E_{0}^{*}, E_{1}^{*}, \ldots, E_{D}^{*}\right\} .
$$

The Terwilliger (or subconstituent) algebra (w.r.t. x)

$$
\mathcal{T}:=\mathcal{T}(x)=\left\langle\mathcal{M}, \mathcal{M}^{*}\right\rangle
$$

where \mathcal{M} is the Bose-Mesner algebra of Γ.

Terwilliger algebra

Denote $\widetilde{A}:=E_{1}^{*} A_{1} E_{1}^{*}$ and $\widetilde{J}:=E_{1}^{*} J E_{1}^{*}$. One can see

$$
\widetilde{A}=\left(\begin{array}{cc}
N & 0 \\
0 & 0
\end{array}\right) .
$$

where N - the adjacency matrix of $\Gamma_{1}(x)$.
Then
$[i, i-1, i-1]=\kappa_{i, \delta}[1,1,1]+\tau_{i}$,
imply that

$$
E_{1}^{*} A_{i-1} E_{i}^{*} A_{i-1} E_{1}^{*} \text { and } E_{1}^{*} A_{i} E_{i-1}^{*} A_{i} E_{1}^{*}
$$

\square

Terwilliger algebra

Denote $\widetilde{A}:=E_{1}^{*} A_{1} E_{1}^{*}$ and $\widetilde{J}:=E_{1}^{*} J E_{1}^{*}$. One can see

$$
\widetilde{A}=\left(\begin{array}{ll}
N & 0 \\
0 & 0
\end{array}\right) .
$$

where N - the adjacency matrix of $\Gamma_{1}(x)$.
Note $[\ell, m, n]_{x, y, z}=\left(E_{1}^{*} A_{m} E_{\ell}^{*} A_{n} E_{1}^{*}\right)_{y, z}$ and $[1,1,1]=(\widetilde{A})_{y, z}^{2}$
imply that
$E_{1}^{*} A_{i-1} E_{i}^{*} A_{i-1} E_{1}^{*}$ and $E_{1}^{*} A_{i} E_{i-1}^{*} A_{i} E_{1}^{*}$

Terwilliger algebra

Denote $\widetilde{A}:=E_{1}^{*} A_{1} E_{1}^{*}$ and $\widetilde{J}:=E_{1}^{*} J E_{1}^{*}$. One can see

$$
\widetilde{A}=\left(\begin{array}{cc}
N & 0 \\
0 & 0
\end{array}\right) .
$$

where N - the adjacency matrix of $\Gamma_{1}(x)$.
Note $[\ell, m, n]_{x, y, z}=\left(E_{1}^{*} A_{m} E_{\ell}^{*} A_{n} E_{1}^{*}\right)_{y, z}$ and $[1,1,1]=(\widetilde{A})_{y, z}^{2}$ Then

$$
\begin{aligned}
& {[i, i-1, i-1]=\kappa_{i, \delta}[1,1,1]+\tau_{i},} \\
& {[i, i+1, i+1]=\sigma_{i, \delta}[1,1,1]+\rho_{i} .}
\end{aligned}
$$

imply that

$$
E_{1}^{*} A_{i-1} E_{i}^{*} A_{i-1} E_{1}^{*} \text { and } E_{1}^{*} A_{i} E_{i-1}^{*} A_{i} E_{1}^{*}
$$

are the polynomials (of degree 2) in \widetilde{A} and $\widetilde{J}:=E_{1}^{*} J E_{1}^{*}$.

The Terwilliger polynomial of a Q-DRG

$$
E_{1}^{*} A_{i-1} E_{i}^{*} A_{i-1} E_{1}^{*} \text { and } E_{1}^{*} A_{i} E_{i-1}^{*} A_{i} E_{1}^{*}
$$

are the polynomials (of degree 2) in \widetilde{A} and $\widetilde{J}:=E_{1}^{*} J E_{1}^{*}$.
> - Terwilliger (early 1990's): There exists a polynomial
> p_{T} of degree 4 such that, for any vertex $x \in \Gamma$, and any non-principal eigenvalue η of $\Gamma_{1}(x)$ we have $p_{T}(\eta) \geq 0$. - p_{T} only depends on the intersection numbers of Γ and the Q-polynomial ordering of primitive idempotents of its Bose-Mesner algebra.
> - We call p_{T} the Terwilliger polynomial. See:

- P. Terwilliger, Lecture Note on Terwilliger algebra (edited by H. Suzuki), 1993.
- A.L.G., J.H. Koolen, The Terwilliger polynomial of a

Q-polynomial distance-regular graph and its application to pseudo-partition graphs // LAA (2015).

The Terwilliger polynomial of a Q-DRG

$$
E_{1}^{*} A_{i-1} E_{i}^{*} A_{i-1} E_{1}^{*} \text { and } E_{1}^{*} A_{i} E_{i-1}^{*} A_{i} E_{1}^{*}
$$

are the polynomials (of degree 2) in \widetilde{A} and $\widetilde{J}:=E_{1}^{*} J E_{1}^{*}$.

- Terwilliger (early 1990's): There exists a polynomial p_{T} of degree 4 such that, for any vertex $x \in \Gamma$, and any non-principal eigenvalue η of $\Gamma_{1}(x)$ we have $p_{T}(\eta) \geq 0$.

The Terwilliger polynomial of a $Q-\mathrm{DRG}$

$$
E_{1}^{*} A_{i-1} E_{i}^{*} A_{i-1} E_{1}^{*} \text { and } E_{1}^{*} A_{i} E_{i-1}^{*} A_{i} E_{1}^{*}
$$

are the polynomials (of degree 2) in \widetilde{A} and $\widetilde{J}:=E_{1}^{*} J E_{1}^{*}$.

- Terwilliger (early 1990's): There exists a polynomial p_{T} of degree 4 such that, for any vertex $x \in \Gamma$, and any non-principal eigenvalue η of $\Gamma_{1}(x)$ we have $p_{T}(\eta) \geq 0$.
- p_{T} only depends on the intersection numbers of Γ and the Q-polynomial ordering of primitive idempotents of its Bose-Mesner algebra.
- We call p_{T} the Terwilliger polynomial.

The Terwilliger polynomial of a Q-DRG

$$
E_{1}^{*} A_{i-1} E_{i}^{*} A_{i-1} E_{1}^{*} \text { and } E_{1}^{*} A_{i} E_{i-1}^{*} A_{i} E_{1}^{*}
$$

are the polynomials (of degree 2) in \widetilde{A} and $\widetilde{J}:=E_{1}^{*} J E_{1}^{*}$.

- Terwilliger (early 1990's): There exists a polynomial p_{T} of degree 4 such that, for any vertex $x \in \Gamma$, and any non-principal eigenvalue η of $\Gamma_{1}(x)$ we have $p_{T}(\eta) \geq 0$.
- p_{T} only depends on the intersection numbers of Γ and the Q-polynomial ordering of primitive idempotents of its Bose-Mesner algebra.
- We call p_{T} the Terwilliger polynomial.

See:

- P. Terwilliger, Lecture Note on Terwilliger algebra (edited by H. Suzuki), 1993.
- A.L.G., J.H. Koolen, The Terwilliger polynomial of a Q-polynomial distance-regular graph and its application to pseudo-partition graphs // LAA (2015).

Terwilliger algebra theory: Summary, 1

For a Q-DRG Γ and a base vertex $x \in \Gamma$:

- Triple intersection numbers:

$$
[i, i-1, i-1]=\kappa_{i, \delta}[1,1,1]+\tau_{i}
$$

$$
[\dot{i}, \dot{i}+1, \dot{i}+1]=\sigma_{i, \delta}[1,1,1]+\rho_{i}
$$

Terwilliger algebra theory: Summary, 2

- The Terwilliger polynomial p_{T} (of degree 4) such that $p_{T}(\eta) \geq 0$ for any non-principal eigenvalue η of $\Gamma_{1}(x)$.

$$
p_{T}(\eta) \geq 0
$$

This restricts possible eigenvalues of $\Gamma_{1}(x)$.

Recall: Sketch of the proof
Suppose that $\iota(\Gamma)=\iota\left(J_{q}(2 d, d)\right)$.

- Use the Terwilliger algebra theory to show that the local graphs of Γ are cospectral to the local graphs of $J_{q}(2 d, d)$ (for any q).

We use the Terwilliger polynomial.
Suppose further that $q=2$.
= Use the Terwilliger algebra theory to show that the μ-graphs of Γ are the same as of $J_{2}(2 d, d)$, if d is odd.

We use triple intersection numbers.

- Apply the Hoffman granhs theory to see that Γ has the same local graphs as $J_{2}(2 d, d)$, if d is large enough.

Recall: Sketch of the proof

Suppose that $\iota(\Gamma)=\iota\left(J_{q}(2 d, d)\right)$.

- Use the Terwilliger algebra theory to show that the local graphs of Γ are cospectral to the local graphs of $J_{q}(2 d, d)$ (for any q).

We use the Terwilliger polynomial.

Suppose further that $q=2$.

\square

- Apply the Hoffman graphs theory to see that Γ has the same local graphs as $J_{2}(2 d, d)$, if d is large enough.

Recall: Sketch of the proof

Suppose that $\iota(\Gamma)=\iota\left(J_{q}(2 d, d)\right)$.

- Use the Terwilliger algebra theory to show that the local graphs of Γ are cospectral to the local graphs of $J_{q}(2 d, d)$ (for any q).

We use the Terwilliger polynomial.
Suppose further that $q=2$.

- Use the Terwilliger algebra theory to show that the μ-graphs of Γ are the same as of $J_{2}(2 d, d)$, if d is odd.
- Apply the Hoffman graphs theory to see that Γ has the same local graphs as $J_{2}(2 d, d)$, if d is large enough.

Recall: Sketch of the proof

Suppose that $\iota(\Gamma)=\iota\left(J_{q}(2 d, d)\right)$.

- Use the Terwilliger algebra theory to show that the local graphs of Γ are cospectral to the local graphs of $J_{q}(2 d, d)$ (for any q).

We use the Terwilliger polynomial.
Suppose further that $q=2$.

- Use the Terwilliger algebra theory to show that the μ-graphs of Γ are the same as of $J_{2}(2 d, d)$, if d is odd. We use triple intersection numbers.
- Apply the Hoffman graphs theory to see that Γ has the same local graphs as $J_{2}(2 d, d)$, if d is large enough.
- Some combinatorics to apply the Numata-Cohen theorem.

Local graphs of Γ

Theorem (G., Koolen, 2014)
Let Γ be a DRG with the same intersection array as $J_{q}(2 d, d), d \geq 3$. Then, for every vertex $x \in \Gamma$, its local graph $\Gamma_{1}(x)$ has the same spectrum as the q-clique extension of the $\left[\begin{array}{l}d \\ 1\end{array}\right] \times\left[\begin{array}{l}d \\ 1\end{array}\right]$-lattice.
Proof: the Terwilliger polynomial + some counting.
This result gives a very strong evidence that $J_{q}(2 d, d)$ is unique, and leads to the following Problem Spectral characterization of the clique extensions of lattices. Negative example: the 3-clique extension of 3×3-lattice has a cospectral mate (Van Dam)

Local graphs of Γ

Theorem (G., Koolen, 2014)
Let Γ be a DRG with the same intersection array as $J_{q}(2 d, d), d \geq 3$. Then, for every vertex $x \in \Gamma$, its local graph $\Gamma_{1}(x)$ has the same spectrum as the q-clique extension of the $\left[\begin{array}{l}d \\ 1\end{array}\right] \times\left[\begin{array}{l}d \\ 1\end{array}\right]$-lattice.
Proof: the Terwilliger polynomial + some counting.
This result gives a very strong evidence that $J_{q}(2 d, d)$ is unique, and leads to the following
Problem
Spectral characterization of the clique extensions of lattices.
\square has a cospectral mate (Van Dam).

Local graphs of Γ

Theorem (G., Koolen, 2014)
Let Γ be a DRG with the same intersection array as $J_{q}(2 d, d), d \geq 3$. Then, for every vertex $x \in \Gamma$, its local graph $\Gamma_{1}(x)$ has the same spectrum as the q-clique extension of the $\left[\begin{array}{l}d \\ 1\end{array}\right] \times\left[\begin{array}{l}d \\ 1\end{array}\right]$-lattice.
Proof: the Terwilliger polynomial + some counting.
This result gives a very strong evidence that $J_{q}(2 d, d)$ is unique, and leads to the following
Problem
Spectral characterization of the clique extensions of lattices.
Negative example: the 3 -clique extension of 3×3-lattice has a cospectral mate (Van Dam).

Local graphs of Γ

Using the Hoffman graphs theory, Koolen and co-authors (Yang, Kim (2015); Yang, Yang (2016); Abiad, Yang (201?)) developed a structure theory for graphs with smallest eigenvalue -3 .

In particular, their results yield that the 2-clique extension of the $t \times t$-lattice with $t \ggg 0$ is characterized by its spectrum. Together with the Numata-Cohen theorem, we obtain:

The Grassmann graph $J_{2}(2 d, d), d>2$, is characterized by its intersection array, if at least one of the following holds:

- the diameter d is large enough.

Local graphs of Γ

Using the Hoffman graphs theory, Koolen and co-authors (Yang, Kim (2015); Yang, Yang (2016); Abiad,Yang (201?)) developed a structure theory for graphs with smallest eigenvalue -3 .

In particular, their results yield that the 2-clique extension of the $t \times t$-lattice with $t \ggg 0$ is characterized by its spectrum. Together with the Numata-Cohen theorem, we obtain:

Theorem (G., Koolen, 2014+)
The Grassmann graph $J_{2}(2 d, d), d>2$, is characterized by its intersection array, if at least one of the following holds:

- the diameter d is odd,
- the diameter d is large enough.

Back to triple intersection numbers

For a Q-DRG Γ, we have that:

$$
[i, i+1, i+1]=\sigma_{i, \delta}[1,1,1]+\rho_{i}
$$

where $\delta=d(y, z) \in\{1,2\}$, and $\sigma_{i, \delta}$ and ρ_{i} are real scalars that do not depend on x, y, z.

If $\iota(\Gamma)=\iota\left(J_{q}(2 d, d)\right)$ or $\iota(\Gamma)=\iota\left(J_{q}(2 d+2, d)\right)$ and the diameter d is odd, then $\sigma_{i, \delta}$ turns to be non-integer.

Back to triple intersection numbers

For a Q-DRG Γ, we have that:

$$
[i, i+1, i+1]=\sigma_{i, \delta}[1,1,1]+\rho_{i}
$$

where $\delta=d(y, z) \in\{1,2\}$, and $\sigma_{i, \delta}$ and ρ_{i} are real scalars that do not depend on x, y, z.

If $\iota(\Gamma)=\iota\left(J_{q}(2 d, d)\right)$ or $\iota(\Gamma)=\iota\left(J_{q}(2 d+2, d)\right)$ and the diameter d is odd, then $\sigma_{i, \delta}$ turns to be non-integer.

Triple intersection numbers of Γ

Using

$$
[i, i+1, i+1]=\sigma_{i, \delta}[1,1,1]+\rho_{i},
$$

where $\sigma_{i, \delta}$ is non-integer, one can show that:

$$
\begin{gathered}
y \nsim z: \\
\left|\Gamma_{1}(x) \cap \Gamma_{1}(y) \cap \Gamma_{1}(z)\right| \equiv q-1(\bmod q+1) \\
y \sim z: \\
\left|\Gamma_{1}(x) \cap \Gamma_{1}(y) \cap \Gamma_{1}(z)\right| \equiv 0(\bmod q+1)
\end{gathered}
$$

Unfortunately, we do not have any restriction, if d is even.

Triple intersection numbers of Γ

Using

$$
[i, i+1, i+1]=\sigma_{i, \delta}[1,1,1]+\rho_{i},
$$

where $\sigma_{i, \delta}$ is non-integer, one can show that:

$$
\begin{gathered}
y \nsim z: \\
\left|\Gamma_{1}(x) \cap \Gamma_{1}(y) \cap \Gamma_{1}(z)\right| \equiv q-1(\bmod q+1) \\
y \sim z: \\
\left|\Gamma_{1}(x) \cap \Gamma_{1}(y) \cap \Gamma_{1}(z)\right| \equiv 0(\bmod q+1)
\end{gathered}
$$

Unfortunately, we do not have any restriction, if d is even.
$\iota(\Gamma)=\iota\left(J_{q}\left(\begin{array}{c}2 d+2 \\ 2 d\end{array}, d\right)\right), q=2$, odd d

$$
\begin{gathered}
y \nsim z: \\
\left|\Gamma_{1}(x) \cap \Gamma_{1}(y) \cap \Gamma_{1}(z)\right| \in\{1,4,7\}
\end{gathered}
$$

In other words, the μ-graph, say Σ, of y and z is a graph on $c_{2}=9$ vertices, whose valencies belong to $\{1,4,7\}$.

$\iota(\Gamma)=\iota\left(J_{q}\left(\begin{array}{c}2 d+2 \\ 2 d\end{array}, d\right)\right), q=2$, odd d

$$
\begin{gathered}
y \nsim z: \\
\left|\Gamma_{1}(x) \cap \Gamma_{1}(y) \cap \Gamma_{1}(z)\right| \in\{1,4,7\}
\end{gathered}
$$

In other words, the μ-graph, say Σ, of y and z is a graph on $c_{2}=9$ vertices, whose valencies belong to $\{1,4,7\}$.

$\iota(\Gamma)=\iota\left(J_{q}\left(\begin{array}{c}2 d+2 \\ 2 d\end{array}, d\right)\right), q=2$, odd d
We distinguish between two cases:

- if Σ does not contain 3 pairwise non-adjacent vertices (a 3-coclique), one can easily find this graph:

$>$ if Σ contains a 3 -coclique, then:

and taking into account that Σ lives in a DRG:

$\iota(\Gamma)=\iota\left(J_{q}\left(\begin{array}{c}2 d+2 \\ 2 d\end{array}, d\right)\right), q=2$, odd d
We distinguish between two cases:
- if Σ does not contain 3 pairwise non-adjacent vertices (a 3-coclique), one can easily find this graph:

- if Σ contains a 3-coclique, then:

$$
\begin{aligned}
& \left|\Gamma_{1}\left(x_{1}\right) \cap \Gamma_{1}\left(x_{2}\right) \cap \Gamma_{1}\left(y_{i}\right)\right| \in\{1,4,7\} \\
& \left|\Gamma_{1}\left(x_{1}\right) \cap \Gamma_{1}\left(y_{i}\right) \cap \Gamma_{1}\left(y_{j}\right)\right| \in\{1,4,7\} \\
& \left|\Gamma_{1}\left(x_{2}\right) \cap \Gamma_{1}\left(y_{i}\right) \cap \Gamma_{1}\left(y_{j}\right)\right| \in\{1,4,7\}
\end{aligned}
$$

and taking into account that Σ lives in a DRG:

$\iota(\Gamma)=\iota\left(J_{q}(2 d, d)\right), q=2$, odd d
We have the 3 possible μ-graphs:

One can easily get rid of the first graph.
cospectral to the 2-clique extension of the $\left[\begin{array}{c}d \\ 1\end{array}\right] \times\left[\begin{array}{c}d \\ 1\end{array}\right]$-lattice. This graph has only 4 distinct eigenvalues \Rightarrow we may compute the number of triangles and quadrangles through any vertex of $\Gamma_{1}(x)$. Then some counting leaves us with the only possibility:

$\iota(\Gamma)=\iota\left(J_{q}(2 d, d)\right), q=2$, odd d
We have the 3 possible μ-graphs:

One can easily get rid of the first graph.
To exclude the second graph, we use the fact that $\Gamma_{1}(x)$ is cospectral to the 2-clique extension of the $\left[\begin{array}{l}d \\ 1\end{array}\right] \times\left[\begin{array}{l}d \\ 1\end{array}\right]$-lattice.
This graph has only 4 distinct eigenvalues \Rightarrow we may compute the number of triangles and quadrangles through any vertex of $\Gamma_{1}(x)$. Then some counting leaves us with the only possibility:

$\iota(\Gamma)=\iota\left(J_{q}(2 d, d)\right), q=2$, odd d

Theorem (G., Koolen, 2014+)
The Grassmann graph $J_{2}(2 d, d), d>2$, is characterized by its intersection array, if at least one of the following holds:

- the diameter d is odd,
- the diameter d is large enough.

Overview of this talk

- Local structure of $J_{q}(n, d)$.
- Local characterization of $J_{q}(n, d)$ by Numata-Cohen.
- Sketch of our characterization of $J_{2}(2 d, d)$.
- The Terwilliger algebra theory.
- What is a problem with $J_{q}(2 d+1, d)$?
- What can we do with $J_{2}(2 d+2, d)$?
- The Hoffman graphs theory.

What is a problem with $J_{q}(2 d+1, d)$?

- The approach by Metsch does not work.
- No enough information from the Terwilliger polynomial.

$$
p_{T}(\eta) \geq 0 .
$$

$J_{q}(2 d, d)$

$$
J_{q}(n, d), n>2 d
$$

- No restrictions on triple intersection numbers:
with integral coefficients.

What is a problem with $J_{q}(2 d+1, d)$?

- The approach by Metsch does not work.
- No enough information from the Terwilliger polynomial.

$$
p_{T}(\eta) \geq 0
$$

$$
J_{q}(2 d, d) \quad J_{q}(n, d), n>2 d
$$

with integral coefficients.

What is a problem with $J_{q}(2 d+1, d)$?

- The approach by Metsch does not work.
- No enough information from the Terwilliger polynomial.

$$
p_{T}(\eta) \geq 0
$$

- No restrictions on triple intersection numbers:

$$
[i, i+1, i+1]=\sigma_{i, \delta}[1,1,1]+\rho_{i}
$$

with integral coefficients.

Overview of this talk

- Local structure of $J_{q}(n, d)$.
- Local characterization of $J_{q}(n, d)$ by Numata-Cohen.
- Sketch of our characterization of $J_{2}(2 d, d)$.
- The Terwilliger algebra theory.
- What is a problem with $J_{q}(2 d+1, d)$?
- What can we do with $J_{2}(2 d+2, d)$?
- The Hoffman graphs theory.

What can we do with $J_{2}(2 d+2, d)$

Assuming that d is odd and $\iota(\Gamma)=\iota\left(J_{2}(2 d+2, d)\right)$, we have only 2 possible μ-graphs in Γ :

However, this time, we do not know the spectrum of $\Gamma_{1}(x)$.
But we know that its smallest eigenvalue is at least -3 .
So, we can use the Hoffman graphs theory, and this will cost us one more condition: $d \ggg 0$.

What can we do with $J_{2}(2 d+2, d)$

Assuming that d is odd and $\iota(\Gamma)=\iota\left(J_{2}(2 d+2, d)\right)$, we have only 2 possible μ-graphs in Γ :

However, this time, we do not know the spectrum of $\Gamma_{1}(x)$. But we know that its smallest eigenvalue is at least -3 .

So, we can use the Hoffman graphs theory, and this will cost us one more condition: $d \ggg 0$.

What can we do with $J_{2}(2 d+2, d)$

Assuming that d is odd and $\iota(\Gamma)=\iota\left(J_{2}(2 d+2, d)\right)$, we have only 2 possible μ-graphs in Γ :

However, this time, we do not know the spectrum of $\Gamma_{1}(x)$. But we know that its smallest eigenvalue is at least -3 .
So, we can use the Hoffman graphs theory, and this will cost us one more condition: $d \ggg 0$.

Overview of this talk

- Local structure of $J_{q}(n, d)$.
- Local characterization of $J_{q}(n, d)$ by Numata-Cohen.
- Sketch of our characterization of $J_{2}(2 d, d)$.
- The Terwilliger algebra theory.
- What is a problem with $J_{q}(2 d+1, d)$?
- What can we do with $J_{2}(2 d+2, d)$?
- The Hoffman graphs theory.

Hoffman graphs: definitions

- A Hoffman graph \mathfrak{h} is a pair (H, ω) of a graph $H=(V, E)$ and a labelling map $\omega: V \rightarrow\{f, s\}$, satisfying the following conditions:
(i) every vertex with label f is adjacent to at least one vertex with label s;
(ii) vertices with label f are pairwise non-adjacent.
- If every slim vertex has at least t fat neighbors, we call $\mathfrak{h} t$-fat.

Hoffman graphs: definitions

- A Hoffman graph \mathfrak{h} is a pair (H, ω) of a graph $H=(V, E)$ and a labelling map $\omega: V \rightarrow\{f, s\}$, satisfying the following conditions:
(i) every vertex with label f is adjacent to at least one vertex with label s;
(ii) vertices with label f are pairwise non-adjacent.
- A vertex with label s is called a slim vertex; A vertex with label f is called a fat vertex; $V_{s}=V_{s}(\mathfrak{h})$ - the set of slim vertices of \mathfrak{h}; $V_{f}=V_{f}(\mathfrak{h})$ - the set of fat vertices of \mathfrak{h}.
- If every slim vertex has at least t fat neighbors, we call $\mathfrak{h} t$-fat.

Hoffman graphs: definitions

- A Hoffman graph \mathfrak{h} is a pair (H, ω) of a graph $H=(V, E)$ and a labelling map $\omega: V \rightarrow\{f, s\}$, satisfying the following conditions:
(i) every vertex with label f is adjacent to at least one vertex with label s;
(ii) vertices with label f are pairwise non-adjacent.
- A vertex with label s is called a slim vertex; A vertex with label f is called a fat vertex; $V_{s}=V_{s}(\mathfrak{h})$ - the set of slim vertices of \mathfrak{h}; $V_{f}=V_{f}(\mathfrak{h})$ - the set of fat vertices of \mathfrak{h}.
- If every slim vertex has at least t fat neighbors, we call $\mathfrak{h} t$-fat.
- The slim graph of a Hoffman graph \mathfrak{h} is the subgraph of H induced on $V_{s}(\mathfrak{h})$.

Representation of Hoffman graphs

For a Hoffman graph \mathfrak{h} and a positive integer n, a mapping $\phi: V(\mathfrak{h}) \rightarrow \mathbb{R}^{n}$ such that:

$$
(\phi(x), \phi(y))= \begin{cases}m & \text { if } x=y \in V_{s}(\mathfrak{h}), \\ 1 & \text { if } x=y \in V_{f}(\mathfrak{h}), \\ 1 & \text { if } x \sim y, \\ 0 & \text { otherwise },\end{cases}
$$

is called a representation of norm m.
Lemma (Jang, Koolen, Munemasa, Taniguchi)
A Hoffman graph with the smallest eigenvalue at least $-m$
has a representation of norm m. Moreover, w.l.o.g., ϕ can
be chosen in such a way that the images of the fat vertices under ϕ are the unit vectors (i.e., (1, 0)-vectors of norm 1).

Representation of Hoffman graphs

For a Hoffman graph \mathfrak{h} and a positive integer n, a mapping $\phi: V(\mathfrak{h}) \rightarrow \mathbb{R}^{n}$ such that:

$$
(\phi(x), \phi(y))= \begin{cases}m & \text { if } x=y \in V_{s}(\mathfrak{h}) \\ 1 & \text { if } x=y \in V_{f}(\mathfrak{h}) \\ 1 & \text { if } x \sim y \\ 0 & \text { otherwise }\end{cases}
$$

is called a representation of norm m.
Lemma (Jang, Koolen, Munemasa, Taniguchi)
A Hoffman graph with the smallest eigenvalue at least $-m$ has a representation of norm m. Moreover, w.l.o.g., ϕ can be chosen in such a way that the images of the fat vertices under ϕ are the unit vectors (i.e., (1,0)-vectors of norm 1).

KYY theorem

Theorem (Koolen, Yang, Yang, 2016)
There exists a positive integer K such that if a graph Δ has the smallest eigenvalue at least -3 and for \forall vertex $x \in \Delta$:

- (its valency) $k(x)>K$;
- A 5-plex containing x has order at most $k(x)-K$, then Δ is the slim graph of a 2 -fat $\{\bullet \bullet, \infty \in$-line Hoffman graph.

This simply means that Δ is the slim graph of a Hoffman graph \mathfrak{d}, which is an induced Hoffman subgraph of the direct sum $\mathfrak{h}=\mathfrak{h}_{1} \oplus \mathfrak{h}_{2} \oplus \ldots$, where \mathfrak{h}_{i} is isomorphic to an induced Hoffman subgraph of some Hoffman graph from the set $\{\diamond, \ldots, \infty$, where \mathfrak{d} and \mathfrak{h} have the same slim graph.

KYY theorem

Theorem (Koolen, Yang, Yang, 2016)
There exists a positive integer K such that if a graph Δ has the smallest eigenvalue at least -3 and for \forall vertex $x \in \Delta$:

- (its valency) $k(x)>K$;
- A 5-plex containing x has order at most $k(x)-K$, then Δ is the slim graph of a 2 -fat $\left\{\propto, \ldots, \infty_{0}\right\}$-line Hoffman graph.

This simply means that Δ is the slim graph of a Hoffman graph \mathfrak{d}, which is an induced Hoffman subgraph of the direct sum $\mathfrak{h}=\mathfrak{h}_{1} \oplus \mathfrak{h}_{2} \oplus \ldots$, where \mathfrak{h}_{i} is isomorphic to an induced Hoffman subgraph of some Hoffman graph from the set $\{\diamond \diamond, \mathcal{A}, \bowtie \bullet\}$, where \mathfrak{d} and \mathfrak{h} have the same slim graph.

Representation of the local graphs of Γ
Suppose that $\iota(\Gamma)=\iota\left(J_{2}(2 d+2, d)\right)$.
Pick a vertex $x \in \Gamma$ and consider its local graph $\Gamma_{1}(x)$.
\square

- By Jang-Koolen-Munemasa-Taniguchi, \mathfrak{h} has a representation of norm 3 , where every fat vertex F is represented by a unit vector $e_{F}:=\phi(F)$.
$\Rightarrow \mathfrak{h}$ is 2 -fat \Rightarrow every slim vertex y is adjacent to at least 2 fat vertices, say F_{1}, F_{2} :

Representation of the local graphs of Γ

Suppose that $\iota(\Gamma)=\iota\left(J_{2}(2 d+2, d)\right)$.
Pick a vertex $x \in \Gamma$ and consider its local graph $\Gamma_{1}(x)$.

- Assuming that $d \ggg 0$, we may apply KYY-theorem to $\Gamma_{1}(x)$. This shows that $\Gamma_{1}(x)$ is the slim graph of a 2 -fat $\{\propto \diamond, \not \approx, \otimes \diamond\}$-line Hoffman graph \mathfrak{h}.
- By Jang-Koolen-Munemasa-Taniguchi, \mathfrak{h} has a representation of norm 3, where every fat vertex F is represented by a unit vector $e_{F}:=\phi(F)$.
$\Rightarrow \mathfrak{h}$ is 2 -fat \Rightarrow every slim vertex y is adjacent to at least 2 fat vertices, say F_{1}, F_{2} :

Representation of the local graphs of Γ

Suppose that $\iota(\Gamma)=\iota\left(J_{2}(2 d+2, d)\right)$.
Pick a vertex $x \in \Gamma$ and consider its local graph $\Gamma_{1}(x)$.

- Assuming that $d \ggg 0$, we may apply KYY-theorem to $\Gamma_{1}(x)$. This shows that $\Gamma_{1}(x)$ is the slim graph of a 2 -fat $\{\propto \diamond \infty, \not \approx \propto\rangle$-line Hoffman graph \mathfrak{h}.
- By Jang-Koolen-Munemasa-Taniguchi, \mathfrak{h} has a representation of norm 3, where every fat vertex F is represented by a unit vector $e_{F}:=\phi(F)$.
- \mathfrak{h} is 2 -fat \Rightarrow every slim vertex y is adjacent to at least

2 fat vertices, say F_{1}, F_{2} :

Representation of the local graphs of Γ

Suppose that $\iota(\Gamma)=\iota\left(J_{2}(2 d+2, d)\right)$.
Pick a vertex $x \in \Gamma$ and consider its local graph $\Gamma_{1}(x)$.

- Assuming that $d \ggg 0$, we may apply KYY-theorem to $\Gamma_{1}(x)$. This shows that $\Gamma_{1}(x)$ is the slim graph of a 2-fat $\{\propto \sim, \mathcal{H}, \diamond \diamond\}$-line Hoffman graph \mathfrak{h}.
- By Jang-Koolen-Munemasa-Taniguchi, \mathfrak{h} has a representation of norm 3, where every fat vertex F is represented by a unit vector $e_{F}:=\phi(F)$.
- \mathfrak{h} is 2 -fat \Rightarrow every slim vertex y is adjacent to at least 2 fat vertices, say F_{1}, F_{2} :

$$
(\phi(y), \phi(y))=3, \quad\left(\phi(y), e_{F_{1}}\right)=\left(\phi(y), e_{F_{2}}\right)=1,
$$

which shows that $\phi(y)$ is a $\{1,1, \pm 1,0\}$-vector.

Representation of $\Gamma_{1}(x)$

Suppose that $\iota(\Gamma)=\iota\left(J_{2}(2 d+2, d)\right)$.
Pick a vertex $x \in \Gamma$ and consider its local graph $\Gamma_{1}(x)$.

- Assuming that $d \gg 0$, we see that there exists a positive integer n and a mapping $\psi: \Gamma_{1}(x) \rightarrow \mathbb{R}^{n}$ such that:

and, moreover, $\psi(y)$ is a $\{1,1, \pm 1,0\}$-vector.
- Clearly, every induced subgraph of $\Gamma_{1}(x)$ should have a representation with these properties.

Representation of $\Gamma_{1}(x)$

Suppose that $\iota(\Gamma)=\iota\left(J_{2}(2 d+2, d)\right)$.
Pick a vertex $x \in \Gamma$ and consider its local graph $\Gamma_{1}(x)$.

- Assuming that $d \ggg 0$, we see that there exists a positive integer n and a mapping $\psi: \Gamma_{1}(x) \rightarrow \mathbb{R}^{n}$ such that:

$$
(\psi(y), \psi(z))= \begin{cases}3 & \text { if } y=z \in \Gamma_{1}(x) \\ 1 & \text { if } y \sim z \\ 0 & \text { otherwise }\end{cases}
$$

and, moreover, $\psi(y)$ is a $\{1,1, \pm 1,0\}$-vector.

- Clearly, every induced subgraph of $\Gamma_{1}(x)$ should have a representation with these properties.

Representation of $\Gamma_{1}(x)$

Suppose that $\iota(\Gamma)=\iota\left(J_{2}(2 d+2, d)\right)$.
Pick a vertex $x \in \Gamma$ and consider its local graph $\Gamma_{1}(x)$.

- Assuming that $d \ggg 0$, we see that there exists a positive integer n and a mapping $\psi: \Gamma_{1}(x) \rightarrow \mathbb{R}^{n}$ such that:

$$
(\psi(y), \psi(z))= \begin{cases}3 & \text { if } y=z \in \Gamma_{1}(x) \\ 1 & \text { if } y \sim z \\ 0 & \text { otherwise }\end{cases}
$$

and, moreover, $\psi(y)$ is a $\{1,1, \pm 1,0\}$-vector.

Clearly, every induced subgraph of I

Representation of $\Gamma_{1}(x)$

Suppose that $\iota(\Gamma)=\iota\left(J_{2}(2 d+2, d)\right)$.
Pick a vertex $x \in \Gamma$ and consider its local graph $\Gamma_{1}(x)$.

- Assuming that $d \ggg 0$, we see that there exists a positive integer n and a mapping $\psi: \Gamma_{1}(x) \rightarrow \mathbb{R}^{n}$ such that:

$$
(\psi(y), \psi(z))= \begin{cases}3 & \text { if } y=z \in \Gamma_{1}(x) \\ 1 & \text { if } y \sim z \\ 0 & \text { otherwise }\end{cases}
$$

and, moreover, $\psi(y)$ is a $\{1,1, \pm 1,0\}$-vector.

- Clearly, every induced subgraph of $\Gamma_{1}(x)$ should have a representation with these properties.

Representation of $\Gamma_{1}(x)$: contradiction

Now we apply this observation to the wrong μ-graph:

The subgraph induced on x, y and their μ-graph in the local graph of the red vertex has an integral representation of norm 3, which is unique.

However, it contains $\{1,-1,-1,0\}$-vectors!

Representation of $\Gamma_{1}(x)$: contradiction

Now we apply this observation to the wrong μ-graph:

The subgraph induced on x, y and their μ-graph in the local graph of the red vertex has an integral representation of norm 3 , which is unique.

However, it contains $\{1,-1,-1,0\}$-vectors!

Representation of $\Gamma_{1}(x)$: contradiction

Now we apply this observation to the wrong μ-graph:

The subgraph induced on x, y and their μ-graph in the local graph of the red vertex has an integral representation of norm 3, which is unique.
However, it contains $\{1,-1,-1,0\}$-vectors!

Summary

Theorem (Metsch, 1995)

The Grassmann graph $J_{q}(n, d), d>2$, is characterized by its intersection array with the following possible exceptions:

- $n=2 d$ or $n=2 d+1$,
- $n=2 d+2$ if $q \in\{2,3\}$,
- $n=2 d+3$ if $q=2$.

Theorem (G., Koolen, 2014)

The Grassmann graph $J_{2}(2 d, d), d>2$, is characterized by its intersection array, if the diameter d is odd or large enough.

Theorem (G., Koolen, 2016)

The Grassmann graph $J_{2}(2 d+2, d), d>2$, is characterized by its intersection array, if the diameter d is odd and large enough.

Thank you!

Стасибо!

Xiè-Xiè!

