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The Grassmann graph Jq(n, d)

I Let q ≥ 2 be a prime power, n ≥ d ≥ 1 be integers.

I Jq(n, d) has as vertices all d-dim. subspaces U ⊆ Fnq .

I U1 ∼ U2 iff dim(U1 ∩ U2) = d− 1.

I Jq(n, d) ∼= Jq(n, n− d), diameter equals min(d, n− d).

⇒ w.l.o.g., we assume n ≥ 2d.

I Distance-transitive ⇒ Distance-regular graph (DRG).

I Q-polynomial.
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Classification problem of Q-DRG

Bannai’s problem (early 1980’s)
Can we classify the Q-polynomial distance-regular graphs
with large diameter?

(Bannai, Ito, Algebraic combinatorics I: Association schemes.)

ι(Γ) := {b0, b1, . . . , bD−1; c1, c2, . . . , cD}.

Q-polinomiality can be recognized from ι(Γ).

Thus, one of the steps towards solution of Bannai’s
problem is to characterize the known DRGs by their
intersection arrays (i.e., to find all DRGs with given ι(Γ)).
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Distance-regular graphs
For a distance-regular graph Γ with diameter D, its
intersection array is:

ι(Γ) := {b0, b1, . . . , bD−1 ; c1, c2, . . . , cD},

where, for ∀ pair of vertices x, y with d(x, y) = i,

|Γ1(y)∩Γi−1(x)| = ci, |Γ1(y)∩Γi(x)| = ai, |Γ1(y)∩Γi+1(x)| = bi

Γ is regular with valency b0 = |Γ1(x)|, ∀x ∈ V (Γ) so that

b0 = ci + ai + bi.
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Characterization of Jq(n, d) by ι(Jq(n, d))

Theorem (Metsch, 1995)
The Grassmann graph Jq(n, d), d > 2, is characterized by
its intersection array with the following possible exceptions:

I n = 2d or n = 2d+ 1,

I n = 2d+ 2 if q ∈ {2, 3},
I n = 2d+ 3 if q = 2.

Some recent progress:

I Van Dam, Koolen (2004): an actual exception for
Jq(2d+ 1, d), the twisted Grassmann graph.

I G., Koolen (2014+): no exceptions for J2(2d, d), if d is
odd or large enough.
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Overview of this talk

I Local structure of Jq(n, d).

I Local characterization of Jq(n, d) by Numata-Cohen.

I Sketch of our characterization of J2(2d, d).

I The Terwilliger algebra theory.

I What is a problem with Jq(2d+ 1, d)?

I What can we do with J2(2d+ 2, d)?

I The Hoffman graphs theory.



Local structure of the Grassmann graphs
Γ1(x) = the local graph of a vertex x of a graph Γ.

Γ = Jq(n, d), U ∈ Γ: U ⊂ (d+ 1) and (d− 1) ⊂ U
↘ ↙

Γ1(U) = q-clique extension of
[
n−d
1

]
×
[
d
1

]
-lattice

where
[
n
1

]
:= (qn − 1)/(q − 1).

µ-graph of x, y (at distance 2) = Γ1(x) ∩ Γ1(y).

Every µ-graph in the Grassmann graphs Jq(n, d) is the
(q + 1)× (q + 1)-lattice.
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Local characterization of Jq(n, d)

Theorem (Numata, Cohen, [BCN, Thm 9.3.8])
Let Γ be a finite connected graph such that

I if x, y ∈ Γ are at distance 2 then

Γ1(x) ∩ Γ1(y) is a lattice,

I if x, y, z ∈ Γ form a coclique then

Γ1(x) ∩ Γ1(y) ∩ Γ1(z) is a coclique,

Then Γ is either a clique, or a Johnson graph, or the folded
Johnson graph J(2d, d), or a Grassmann graph over a finite
field.
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Some recent progress

Theorem (G., Koolen, 2014+)
The Grassmann graph J2(2d, d), d > 2, is characterized by
its intersection array, if at least one of the following holds:

I the diameter d is odd,

I the diameter d is large enough.

Proof:
Suppose that ι(Γ) = ι(J2(2d, d)).

(1) The Terwilliger algebra theory to derive some local
properties of Γ.

(2) The Hoffman graphs theory to determine the local
graphs of Γ.

(3) The Numata-Cohen characterization.
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Sketch of the proof

Suppose that ι(Γ) = ι(Jq(2d, d)).

I Use the Terwilliger algebra theory to show that the
local graphs of Γ are cospectral to the local graphs of
Jq(2d, d) (for any q).

Suppose further that q = 2.

I Use the Terwilliger algebra theory to show that the
µ-graphs of Γ are the same as of J2(2d, d), if d is odd.

I Apply the Hoffman graphs theory to see that Γ has the
same local graphs as J2(2d, d), if d is large enough.

I Some combinatorics to apply the Numata-Cohen
theorem.
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Intersection numbers

Let Γ be a DRG.
Let x, y be any pair of vertices of Γ with d(x, y) = k.
Then the intersection numbers of Γ

pkij := |Γi(x) ∩ Γj(y)| = |Γj(x) ∩ Γi(y)|

do not depend on the choice of x, y, ∀ 0 ≤ i, j, k ≤ D(Γ).

Note that ci = pi1,i−1, ai = pi1,i, bi = pi1,i+1.



Triple intersection numbers
Let Γ be a Q-polynomial DRG with diameter D ≥ 3.
Fix a triple of vertices x, y, z such that x ∼ y, x ∼ z.
Denote a triple intersection number

[`,m, n] := [`,m, n]x,y,z = |Γ`(x) ∩ Γm(y) ∩ Γn(z)|

Terwilliger (1995) and Dickie (1996) showed that for i ≥ 2

[i, i− 1, i− 1] = κi,δ[1, 1, 1] + τi

where δ = d(y, z) ∈ {1, 2}, and κi,δ and τi are real scalars
that do not depend on x, y, z.

x
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Triple intersection numbers

In the same manner, one can show that

[i, i+ 1, i+ 1] = σi,δ[1, 1, 1] + ρi

where δ = d(y, z) ∈ {1, 2}, and σi,δ and ρi are real scalars
that do not depend on x, y, z.

x

y

z



Bose-Mesner algebra
I Let Γ be a DRG with diameter D and on v vertices.

I Define the distance-i matrix Ai of Γ:

(Ai)x,y :=

{
1 if d(x, y) = i,

0 if d(x, y) 6= i.

I A1 — the adjacency matrix of Γ, A0 = I.

I One has:

AiAj = AjAi =
D∑
k=0

pkijAk,

A1Ai = bi−1Ai−1 + aiAi + ci+1Ai+1,

where pkij are the intersection numbers.

I The Bose-Mesner algebra M⊆ Cv×v is the matrix
algebra over C generated by A0 = I, A1, . . . , AD.



Bose-Mesner algebra
I Let Γ be a DRG with diameter D and on v vertices.

I Define the distance-i matrix Ai of Γ:

(Ai)x,y :=

{
1 if d(x, y) = i,

0 if d(x, y) 6= i.

I A1 — the adjacency matrix of Γ, A0 = I.

I One has:

AiAj = AjAi =
D∑
k=0

pkijAk,

A1Ai = bi−1Ai−1 + aiAi + ci+1Ai+1,

where pkij are the intersection numbers.

I The Bose-Mesner algebra M⊆ Cv×v is the matrix
algebra over C generated by A0 = I, A1, . . . , AD.



Terwilliger algebra
Fix any vertex x ∈ V (Γ).

For 0 ≤ i ≤ D, denote by E∗
i := E∗

i (x) a diagonal matrix
with rows and columns indexed by V (Γ), and defined by

(E∗
i )y,y :=

{
1 if d(x, y) = i,

0 if d(x, y) 6= i.

The dual Bose-Mesner algebra (w.r.t. x)

M∗ :=M∗(x) = span{E∗
0 , E

∗
1 , . . . , E

∗
D}.

The Terwilliger (or subconstituent) algebra (w.r.t. x)

T := T (x) = 〈M,M∗〉,

where M is the Bose-Mesner algebra of Γ.
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Terwilliger algebra

Denote Ã := E∗
1A1E

∗
1 and J̃ := E∗

1JE
∗
1 . One can see

Ã =

(
N 0
0 0

)
.

where N — the adjacency matrix of Γ1(x).

Note [`,m, n]x,y,z = (E∗
1AmE

∗
`AnE

∗
1)y,z and [1, 1, 1] = (Ã)2y,z

Then
[i, i− 1, i− 1] = κi,δ[1, 1, 1] + τi,

[i, i+ 1, i+ 1] = σi,δ[1, 1, 1] + ρi.

imply that

E∗
1Ai−1E

∗
iAi−1E

∗
1 and E∗

1AiE
∗
i−1AiE

∗
1

are the polynomials (of degree 2) in Ã and J̃ := E∗
1JE

∗
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The Terwilliger polynomial of a Q-DRG

E∗
1Ai−1E

∗
iAi−1E

∗
1 and E∗

1AiE
∗
i−1AiE

∗
1

are the polynomials (of degree 2) in Ã and J̃ := E∗
1JE

∗
1 .

I Terwilliger (early 1990’s): There exists a polynomial
pT of degree 4 such that, for any vertex x ∈ Γ, and any
non-principal eigenvalue η of Γ1(x) we have pT (η) ≥ 0.

I pT only depends on the intersection numbers of Γ and
the Q-polynomial ordering of primitive idempotents of
its Bose-Mesner algebra.

I We call pT the Terwilliger polynomial.

See:
• P. Terwilliger, Lecture Note on Terwilliger algebra (edited by
H. Suzuki), 1993.

• A.L.G., J.H. Koolen, The Terwilliger polynomial of a

Q-polynomial distance-regular graph and its application to

pseudo-partition graphs // LAA (2015).
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are the polynomials (of degree 2) in Ã and J̃ := E∗
1JE

∗
1 .

I Terwilliger (early 1990’s): There exists a polynomial
pT of degree 4 such that, for any vertex x ∈ Γ, and any
non-principal eigenvalue η of Γ1(x) we have pT (η) ≥ 0.

I pT only depends on the intersection numbers of Γ and
the Q-polynomial ordering of primitive idempotents of
its Bose-Mesner algebra.

I We call pT the Terwilliger polynomial.

See:
• P. Terwilliger, Lecture Note on Terwilliger algebra (edited by
H. Suzuki), 1993.

• A.L.G., J.H. Koolen, The Terwilliger polynomial of a

Q-polynomial distance-regular graph and its application to

pseudo-partition graphs // LAA (2015).



Terwilliger algebra theory: Summary, 1
For a Q-DRG Γ and a base vertex x ∈ Γ:

I Triple intersection numbers:

[i, i− 1, i− 1] = κi,δ[1, 1, 1] + τi

x

y

z

[i, i+ 1, i+ 1] = σi,δ[1, 1, 1] + ρi

x

y

z



Terwilliger algebra theory: Summary, 2

I The Terwilliger polynomial pT (of degree 4) such that
pT (η) ≥ 0 for any non-principal eigenvalue η of Γ1(x).

This restricts possible eigenvalues of Γ1(x).



Recall: Sketch of the proof
Suppose that ι(Γ) = ι(Jq(2d, d)).

I Use the Terwilliger algebra theory to show that the
local graphs of Γ are cospectral to the local graphs of
Jq(2d, d) (for any q).

We use the Terwilliger polynomial.

Suppose further that q = 2.

I Use the Terwilliger algebra theory to show that the
µ-graphs of Γ are the same as of J2(2d, d), if d is odd.

We use triple intersection numbers.

I Apply the Hoffman graphs theory to see that Γ has the
same local graphs as J2(2d, d), if d is large enough.

I Some combinatorics to apply the Numata-Cohen
theorem.
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Local graphs of Γ

Theorem (G., Koolen, 2014)
Let Γ be a DRG with the same intersection array as
Jq(2d, d), d ≥ 3. Then, for every vertex x ∈ Γ, its local
graph Γ1(x) has the same spectrum as the q-clique
extension of the

[
d
1

]
×
[
d
1

]
-lattice.

Proof: the Terwilliger polynomial + some counting.

This result gives a very strong evidence that Jq(2d, d) is
unique, and leads to the following

Problem
Spectral characterization of the clique extensions of lattices.

Negative example: the 3-clique extension of 3× 3-lattice
has a cospectral mate (Van Dam).
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Local graphs of Γ

Using the Hoffman graphs theory, Koolen and co-authors
(Yang, Kim (2015); Yang, Yang (2016); Abiad,Yang (201?))
developed a structure theory for graphs with smallest
eigenvalue −3.

In particular, their results yield that the 2-clique extension
of the t× t-lattice with t≫ 0 is characterized by its
spectrum. Together with the Numata-Cohen theorem, we
obtain:

Theorem (G., Koolen, 2014+)
The Grassmann graph J2(2d, d), d > 2, is characterized by
its intersection array, if at least one of the following holds:

I the diameter d is odd,

I the diameter d is large enough.
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Back to triple intersection numbers

For a Q-DRG Γ, we have that:

[i, i+ 1, i+ 1] = σi,δ[1, 1, 1] + ρi

where δ = d(y, z) ∈ {1, 2}, and σi,δ and ρi are real scalars
that do not depend on x, y, z.

x

y

z

If ι(Γ) = ι(Jq(2d, d)) or ι(Γ) = ι(Jq(2d+ 2, d)) and the
diameter d is odd, then σi,δ turns to be non-integer.
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Triple intersection numbers of Γ

Using
[i, i+ 1, i+ 1] = σi,δ[1, 1, 1] + ρi,

where σi,δ is non-integer, one can show that:

x

y

z

y 6∼ z :
|Γ1(x) ∩ Γ1(y) ∩ Γ1(z)| ≡ q − 1 (mod q + 1)

y ∼ z :
|Γ1(x) ∩ Γ1(y) ∩ Γ1(z)| ≡ 0 (mod q + 1)

Unfortunately, we do not have any restriction, if d is even.
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ι(Γ) = ι(Jq(
2d+2

2d , d)), q = 2, odd d

x

y

z

y 6∼ z :
|Γ1(x) ∩ Γ1(y) ∩ Γ1(z)| ∈ {1, 4, 7}

In other words, the µ-graph, say Σ, of y and z is a graph on
c2 = 9 vertices, whose valencies belong to {1, 4, 7}.

Σ ∼= ?
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ι(Γ) = ι(Jq(
2d+2

2d , d)), q = 2, odd d
We distinguish between two cases:

I if Σ does not contain 3 pairwise non-adjacent vertices
(a 3-coclique), one can easily find this graph:

I if Σ contains a 3-coclique, then:

x1
y1

y3

y2 x2
|Γ1(x1) ∩ Γ1(x2) ∩ Γ1(yi)| ∈ {1, 4, 7}
|Γ1(x1) ∩ Γ1(yi) ∩ Γ1(yj)| ∈ {1, 4, 7}
|Γ1(x2) ∩ Γ1(yi) ∩ Γ1(yj)| ∈ {1, 4, 7}

and taking into account that Σ lives in a DRG:

or
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ι(Γ) = ι(Jq(2d, d)), q = 2, odd d
We have the 3 possible µ-graphs:

One can easily get rid of the first graph.
To exclude the second graph, we use the fact that Γ1(x) is
cospectral to the 2-clique extension of the

[
d
1

]
×
[
d
1

]
-lattice.

This graph has only 4 distinct eigenvalues ⇒ we may
compute the number of triangles and quadrangles through
any vertex of Γ1(x). Then some counting leaves us with the
only possibility:
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ι(Γ) = ι(Jq(2d, d)), q = 2, odd d

Theorem (G., Koolen, 2014+)
The Grassmann graph J2(2d, d), d > 2, is characterized by
its intersection array, if at least one of the following holds:

I the diameter d is odd,

I the diameter d is large enough.



Overview of this talk

I Local structure of Jq(n, d).

I Local characterization of Jq(n, d) by Numata-Cohen.

I Sketch of our characterization of J2(2d, d).

I The Terwilliger algebra theory.

I What is a problem with Jq(2d+ 1, d)?

I What can we do with J2(2d+ 2, d)?

I The Hoffman graphs theory.



What is a problem with Jq(2d + 1, d)?

I The approach by Metsch does not work.

I No enough information from the Terwilliger polynomial.

Jq(2d, d) Jq(n, d), n > 2d

I No restrictions on triple intersection numbers:

[i, i+ 1, i+ 1] = σi,δ[1, 1, 1] + ρi

with integral coefficients.
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What can we do with J2(2d + 2, d)

Assuming that d is odd and ι(Γ) = ι(J2(2d+ 2, d)), we have
only 2 possible µ-graphs in Γ:

However, this time, we do not know the spectrum of Γ1(x).
But we know that its smallest eigenvalue is at least −3.

So, we can use the Hoffman graphs theory, and this will
cost us one more condition: d≫ 0.
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Hoffman graphs: definitions

I A Hoffman graph h is a pair (H,ω) of a graph
H = (V,E) and a labelling map ω : V → {f, s},
satisfying the following conditions:

(i) every vertex with label f is adjacent to at least one
vertex with label s;

(ii) vertices with label f are pairwise non-adjacent.

I A vertex with label s is called a slim vertex;
A vertex with label f is called a fat vertex;
Vs = Vs(h) – the set of slim vertices of h;
Vf = Vf (h) – the set of fat vertices of h.

I If every slim vertex has at least t fat neighbors, we call
h t-fat.

I The slim graph of a Hoffman graph h is the subgraph
of H induced on Vs(h).
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Representation of Hoffman graphs

For a Hoffman graph h and a positive integer n, a mapping
φ : V (h)→ Rn such that:

(φ(x), φ(y)) =


m if x = y ∈ Vs(h),

1 if x = y ∈ Vf (h),

1 if x ∼ y,

0 otherwise,

is called a representation of norm m.

Lemma (Jang, Koolen, Munemasa, Taniguchi)
A Hoffman graph with the smallest eigenvalue at least −m
has a representation of norm m. Moreover, w.l.o.g., φ can
be chosen in such a way that the images of the fat vertices
under φ are the unit vectors (i.e., (1, 0)-vectors of norm 1).
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KYY theorem

Theorem (Koolen, Yang, Yang, 2016)
There exists a positive integer K such that if a graph ∆ has
the smallest eigenvalue at least −3 and for ∀ vertex x ∈ ∆:

I (its valency) k(x) > K;

I A 5-plex containing x has order at most k(x)−K,

then ∆ is the slim graph of a 2-fat { , , }-line
Hoffman graph.

This simply means that ∆ is the slim graph of a Hoffman
graph d, which is an induced Hoffman subgraph of the
direct sum h = h1 ⊕ h2 ⊕ ..., where hi is isomorphic to an
induced Hoffman subgraph of some Hoffman graph from the

set { , , }, where d and h have the same slim graph.
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Representation of the local graphs of Γ
Suppose that ι(Γ) = ι(J2(2d+ 2, d)).
Pick a vertex x ∈ Γ and consider its local graph Γ1(x).

I Assuming that d≫ 0, we may apply KYY-theorem to
Γ1(x). This shows that Γ1(x) is the slim graph of a

2-fat { , , }-line Hoffman graph h.

I By Jang-Koolen-Munemasa-Taniguchi, h has a
representation of norm 3, where every fat vertex F is
represented by a unit vector eF := φ(F ).

I h is 2-fat ⇒ every slim vertex y is adjacent to at least
2 fat vertices, say F1, F2:

(φ(y), φ(y)) = 3, (φ(y), eF1) = (φ(y), eF2) = 1,

which shows that φ(y) is a {1, 1,±1, 0}-vector.
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Representation of Γ1(x)

Suppose that ι(Γ) = ι(J2(2d+ 2, d)).
Pick a vertex x ∈ Γ and consider its local graph Γ1(x).

I Assuming that d≫ 0, we see that there exists a
positive integer n and a mapping ψ : Γ1(x)→ Rn such
that:

(ψ(y), ψ(z)) =


3 if y = z ∈ Γ1(x),

1 if y ∼ z,

0 otherwise,

and, moreover, ψ(y) is a {1, 1,±1, 0}-vector.

I Clearly, every induced subgraph of Γ1(x) should have a
representation with these properties.
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Representation of Γ1(x): contradiction

Now we apply this observation to the wrong µ-graph:

⇒ ⇒

The subgraph induced on x, y and their µ-graph in the
local graph of the red vertex has an integral representation
of norm 3, which is unique.

However, it contains {1,−1,−1, 0}-vectors!
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Now we apply this observation to the wrong µ-graph:

⇒ ⇒

The subgraph induced on x, y and their µ-graph in the
local graph of the red vertex has an integral representation
of norm 3, which is unique.

However, it contains {1,−1,−1, 0}-vectors!



Representation of Γ1(x): contradiction

Now we apply this observation to the wrong µ-graph:

⇒ ⇒

The subgraph induced on x, y and their µ-graph in the
local graph of the red vertex has an integral representation
of norm 3, which is unique.

However, it contains {1,−1,−1, 0}-vectors!



Summary

Theorem (Metsch, 1995)
The Grassmann graph Jq(n, d), d > 2, is characterized by its
intersection array with the following possible exceptions:

I n = 2d or n = 2d + 1,

I n = 2d + 2 if q ∈ {2, 3},
I n = 2d + 3 if q = 2.

Theorem (G., Koolen, 2014)
The Grassmann graph J2(2d, d), d > 2, is characterized by its
intersection array, if the diameter d is odd or large enough.

Theorem (G., Koolen, 2016)
The Grassmann graph J2(2d + 2, d), d > 2, is characterized by its
intersection array, if the diameter d is odd and large enough.



Thank you!

Cπacuδo!

Xiè-Xiè!
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