Some simple groups which are determined by their character degree graphs

Somayeh Heydari, Shahre-kord University, Shahre-kord, Iran

Agust 27, 2016

・ロト ・御ト ・注ト ・注

- Introduction;
- **2** Definitions;
- Brief history about character degree graph;
- Some Lemmas;
- Main Result;
- **6** References

Representation, FG-module and character

Let W be a vector space of the dimension n on a field F and let G be a finite group. Then

► a representation of G of degree n is a homomorphism $\rho: G \to GL(W)$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Representation, FG-module and character

Let W be a vector space of the dimension n on a field F and let G be a finite group. Then

► a representation of G of degree n is a homomorphism $\rho: G \to GL(W)$.

► Vector space W with the defination $w.g = w\rho(g)$, where $w \in W$ and $g \in G$, is called a *FG*-module. W is said to be irreducible, if it has no nontrivial submodules. Also, if W is an irreducible *FG*-module, then ρ is called irreducible.

Representation, FG-module and character

Let W be a vector space of the dimension n on a field F and let G be a finite group. Then

► a representation of G of degree n is a homomorphism $\rho: G \to GL(W)$.

► Vector space W with the defination $w.g = w\rho(g)$, where $w \in W$ and $g \in G$, is called a *FG*-module. W is said to be irreducible, if it has no nontrivial submodules. Also, if W is an irreducible *FG*-module, then ρ is called irreducible.

 \blacktriangleright a function

$$\begin{aligned} \theta_{\rho} &: G \to F \\ g &\mapsto Tr(\rho(g)) \end{aligned}$$

is called a character corresponding to ρ .

- 4 周 ト 4 ヨ ト 4 ヨ

Degree of a character

The degree of θ_{ρ} is the degree of ρ , which is equal to $\theta_{\rho}(1)$.

- 4 回 ト - 4 回 ト - 4 回 ト

Degree of a character

The degree of θ_{ρ} is the degree of ρ , which is equal to $\theta_{\rho}(1)$.

Irreducible character

If ρ is irreducible, then θ_{ρ} is called an irreducible character.

- 4 回 ト - 4 回 ト - 4 回 ト

Degree of a character

The degree of θ_{ρ} is the degree of ρ , which is equal to $\theta_{\rho}(1)$.

Irreducible character

If ρ is irreducible, then θ_{ρ} is called an irreducible character.

$\operatorname{Irr}(G)$

The set of irreducible characters of G is denoted by Irr(G).

$\operatorname{cd}(G) X_1(G)$

The set of all irreducible character degrees of G fogetting multiplicities is shown by cd(G). Also, the set of all irreducible character degrees of G counting multiplicities is shown by $X_1(G)$.

(本部) (本語) (本語)

$cd(G) X_1(G)$

The set of all irreducible character degrees of G fogetting multiplicities is shown by cd(G). Also, the set of all irreducible character degrees of G counting multiplicities is shown by $X_1(G)$.

$\rho(G)$

The set of prime divisors of the elements of cd(G) is denoted by $\rho(G)$.

|田・ (同) (同)

$\mathbb{C}G$

Let \mathbb{C} be the complex number field. Then the group algebra of G over \mathbb{C} , which is denoted by $\mathbb{C}G$, consists of the set of all sums of the form $\sum_{g \in G} a_g g$, with two multiplications $\sum_{g \in G} a_g g + \sum_{g \in G} b_g g = \sum_{g \in G} (a_g + b_g)g$, $\sum_{g \in G} a_g g \sum_{h \in G} b_h h = \sum_{g \in G} \sum_{h \in G} (a_g a_h)gh$.

伺下 イヨト イヨト

$\mathbb{C}G$

Let \mathbb{C} be the complex number field. Then the group algebra of G over \mathbb{C} , which is denoted by $\mathbb{C}G$, consists of the set of all sums of the form $\sum_{g \in G} a_g g$, with two multiplications $\sum_{g \in G} a_g g + \sum_{g \in G} b_g g = \sum_{g \in G} (a_g + b_g)g$, $\sum_{g \in G} a_g g \sum_{h \in G} b_h h = \sum_{g \in G} \sum_{h \in G} (a_g a_h)gh$.

T. Molien proved that $\mathbb{C}G = \bigoplus_{i=1}^{k} M_{n_i}(\mathbb{C})$, where $n_1, ..., n_k$ are degrees of the irreducible characters of G. Thus for the groups G and H, $X_1(G) = X_1(H)$ if and only if $\mathbb{C}G \cong \mathbb{C}H$.

$\mathbb{C}G$

Let \mathbb{C} be the complex number field. Then the group algebra of G over \mathbb{C} , which is denoted by $\mathbb{C}G$, consists of the set of all sums of the form $\sum_{g \in G} a_g g$, with two multiplications $\sum_{g \in G} a_g g + \sum_{g \in G} b_g g = \sum_{g \in G} (a_g + b_g)g$, $\sum_{g \in G} a_g g \sum_{h \in G} b_h h = \sum_{g \in G} \sum_{h \in G} (a_g a_h)gh$.

T. Molien proved that $\mathbb{C}G = \bigoplus_{i=1}^{k} M_{n_i}(\mathbb{C})$, where $n_1, ..., n_k$ are degrees of the irreducible characters of G. Thus for the groups G and H, $X_1(G) = X_1(H)$ if and only if $\mathbb{C}G \cong \mathbb{C}H$. O. Manz, W. Willems, and T. R. Wolf in 1989, introduced a graph based on cd of a group as follows:

(4月) (4日) (4日)

$\mathbb{C}G$

Let \mathbb{C} be the complex number field. Then the group algebra of G over \mathbb{C} , which is denoted by $\mathbb{C}G$, consists of the set of all sums of the form $\sum_{g \in G} a_g g$, with two multiplications $\sum_{g \in G} a_g g + \sum_{g \in G} b_g g = \sum_{g \in G} (a_g + b_g)g$, $\sum_{g \in G} a_g g \sum_{h \in G} b_h h = \sum_{g \in G} \sum_{h \in G} (a_g a_h)gh$.

T. Molien proved that $\mathbb{C}G = \bigoplus_{i=1}^{k} M_{n_i}(\mathbb{C})$, where $n_1, ..., n_k$ are degrees of the irreducible characters of G. Thus for the groups G and H, $X_1(G) = X_1(H)$ if and only if $\mathbb{C}G \cong \mathbb{C}H$. O. Manz, W. Willems, and T. R. Wolf in 1989, introduced a graph based on cd of a group as follows:

$\Delta(G)$

The character degree graph of G, denoted by $\Delta(G)$, is a graph with vertex set $\rho(G)$ and two vertices a and b are adjacent in $\Delta(G)$, if ab divides some irreducible character degree of G.

Example

 $cd(M_{11}) = \{1, 10, 11, 16, 44, 45, 55\}$. Thus $\Delta(M_{11})$ is as follows:

伺下 イヨト イヨ

Example

$cd(M_{11}) = \{1, 10, 11, 16, 44, 45, 55\}$. Thus $\Delta(M_{11})$ is as follows:

Irreducible constituent

If $\chi = \sum_{i=1}^{N} n_i \chi_i$, where for every $1 \le i \le N$, $\chi_i \in \operatorname{Irr}(G)$, then those χ_i with $n_i > 0$ are called irreducible constituents of χ .

- 4 同 ト - 4 回 ト - 4 回 ト

In [1], a question (No. 126) has posed as: **Question.** Let $X_1(G) = X_1(S_n)$. Is it true $G \cong S_n$? Moreover, if $X_1(G) = X_1(H)$, where H is a simple group, then do we conclude that $G \cong H$?

・ 同 ト ・ ヨ ト ・ ヨ ト

In [1], a question (No. 126) has posed as: **Question.** Let $X_1(G) = X_1(S_n)$. Is it true $G \cong S_n$? Moreover, if $X_1(G) = X_1(H)$, where H is a simple group, then do we conclude that $G \cong H$?

H.P. Tong-Viet

Symmetric groups are determined by their character degrees, J. Algebra, 334(2011) 275 – 284.

- 4 同 ト - 4 回 ト - 4 回 ト

In [1], a question (No. 126) has posed as: **Question.** Let $X_1(G) = X_1(S_n)$. Is it true $G \cong S_n$? Moreover, if $X_1(G) = X_1(H)$, where H is a simple group, then do we conclude that $G \cong H$?

H.P. Tong-Viet

Symmetric groups are determined by their character degrees, J. Algebra, 334(2011) 275 – 284.

H.P. Tong-Viet

Simple classical groups of Lie type are determined by their character degrees,

J. Algebra, 357(2012) 61 - 68.

・ロト ・ 同ト ・ ヨト ・ ヨト

Complex group algebra

If H is a group which is not simple, then the second part of the above Question is not necessarily true.

Example

For example, $X_1(\mathbb{D}_8) = X_1(\mathbb{Q}_8)$, but $\mathbb{D}_8 \ncong \mathbb{Q}_8$.

- 4 同 ト - 4 回 ト - 4 回 ト

Complex group algebra

If H is a group which is not simple, then the second part of the above Question is not necessarily true.

Example

For example, $X_1(\mathbb{D}_8) = X_1(\mathbb{Q}_8)$, but $\mathbb{D}_8 \ncong \mathbb{Q}_8$.

S. Heydari and N. Ahanjideh

A characterization of $PGL(2, p^n)$ by some irreducible complex character degrees, *Publications de l'Institut Mathematique*, doi: 10.2298/pim150111017h.

Complex group algebra

If H is a group which is not simple, then the second part of the above Question is not necessarily true.

Example

For example, $X_1(\mathbb{D}_8) = X_1(\mathbb{Q}_8)$, but $\mathbb{D}_8 \ncong \mathbb{Q}_8$.

S. Heydari and N. Ahanjideh

A characterization of $PGL(2, p^n)$ by some irreducible complex character degrees, *Publications de l'Institut Mathematique*, doi: 10.2298/pim150111017h.

S. Heydari and N. Ahanjideh

Groups with the same complex group algebras as some extensions of $PSL(2, p^n)$, *Math. Slovaca, accepted.*

э

O. Manz, W. Willems and T. R. Wolf, J. Reine Angew. Math., 1989

If G is a solvable group, then the diameter of $\Delta(G)$ is at most 3.

O. Manz, W. Willems and T. R. Wolf, J. Reine Angew. Math., 1989

If G is a solvable group, then the diameter of $\Delta(G)$ is at most 3.

P.P. Palfy, Period. Math. Hung., 1998

Let π be a subset of the vertex set of $\Delta(G)$, with $|\pi| = 3$. Then there is an edge incident to two of the elements of π .

D.L. White, J. Algebra, 2008

Let G be a simple group. The graph $\Delta(G)$ is disconnected if and only if $G \cong PSL(2,q)$ for some prime power q. If $\Delta(G)$ is connected, then the diameter of $\Delta(G)$ is at most 3 and $\Delta(G)$ is a complete graph except in the following cases:

- **1.** The diameter of $\Delta(G)$ is 3 if and only if $G \cong J_1$.
- **2.** The diameter of $\Delta(G)$ is 2 if and only if G is isomorphic to one of the following groups:
 - (a) the Sporadic Mathieu group M_{11} or M_{23} ,
 - (b) the alternating group A_8 ,
 - (c) the Suzuki group ${}^{2}B_{2}(q)$, where $q = 2^{2m+1}$ and m > 1,
- (d) the linear group PSL(3,q), where q > 2 is even or q is odd and q-1 is divisible by a prime other than 2 or 3, or

(e) the unitary group PSU(3,q), where q > 2 and q + 1 is divisible

(日) (周) (王) (王) (王)

M.L. Lewis and D.L. White, J. Algebra, 2007

If G is a non-solvable group, then the diameter of $\Delta(G)$ is at most 3.

M.L. Lewis and D.L. White, J. Algebra, 2007

If G is a non-solvable group, then the diameter of $\Delta(G)$ is at most 3.

H.P. Tong-Viet, J. Algebra, 2013

If G is any finite group such that $\Delta(G)$ has no triangle, then $\Delta(G)$ has at most 5 vertices.

M.L. Lewis and D.L. White, J. Algebra, 2007

If G is a non-solvable group, then the diameter of $\Delta(G)$ is at most 3.

H.P. Tong-Viet, J. Algebra, 2013

If G is any finite group such that $\Delta(G)$ has no triangle, then $\Delta(G)$ has at most 5 vertices.

H.P. Tong-Viet, J. Algebra, 2014

The character degree graph $\Delta(G)$ of a finite group G is 3-regular if and only if it is a complete graph with four vertices.

- 4 同 ト - 4 回 ト - 4 回 ト

M.L. Lewis and D.L. White, J. Algebra, 2007

If G is a non-solvable group, then the diameter of $\Delta(G)$ is at most 3.

H.P. Tong-Viet, J. Algebra, 2013

If G is any finite group such that $\Delta(G)$ has no triangle, then $\Delta(G)$ has at most 5 vertices.

H.P. Tong-Viet, J. Algebra, 2014

The character degree graph $\Delta(G)$ of a finite group G is 3-regular if and only if it is a complete graph with four vertices.

Z. Akhlaghi and H. P. Tong-Viet, Algebr. Represent. Theor, 2015

If G is a finite group such that $\Delta(G)$ is K_4 -Free, then $|\rho(G)| \leq 7$.

Khosravi's group posed a conjecture as: Conjecture: Let G and M be two groups such that $\Delta(G) = \Delta(M)$ and |G| = |H|. Then $G \cong M$.

B. Khosravi, B. Khosravi, B. Khosravi and Z. Momen

Recognition by character degree graph and order of simple groups of order less than 6000, Miskolc Math. Notes 15(2)(2014) 537 - 544. Khosravi's group posed a conjecture as: Conjecture: Let G and M be two groups such that $\Delta(G) = \Delta(M)$ and |G| = |H|. Then $G \cong M$.

B. Khosravi, B. Khosravi, B. Khosravi and Z. Momen

Recognition by character degree graph and order of simple groups of order less than 6000, Miskolc Math. Notes 15(2)(2014) 537 - 544.

B. Khosravi, B. Khosravi and B. Khosravi

Recognition of some simple groups by character degree graph and order,

Math. Reports 18(68)(2016) 51 - 61.

- 4 同 ト - 4 ヨ ト - 4 ヨ ト

B. Khosravi, B. Khosravi, B. Khosravi and Z. Momen

Recognition of the Simple group $PSL(2, p^2)$ by character degree graph and order, Monatsh Math. **178**(2)(2015) 251 - 257.

Ito's Theorem

Let A be an abelian normal subgroup of G. Then $\chi(1) \mid [G:A]$, for all $\chi \in Irr(G)$.

・ 問 ト ・ ヨ ト ・ ヨ ト

Ito's Theorem

Let A be an abelian normal subgroup of G. Then $\chi(1) \mid [G:A]$, for all $\chi \in Irr(G)$.

Lemma

Let $N \trianglelefteq G$ and $\chi \in Irr(G)$. Let θ be an irreducible constituent of χ_N , where χ_N is the restriction of χ to N. Then $\frac{\chi(1)}{\theta(1)} \mid [G:N].$

- 4 回 トーイ ヨ トー

Ito's Theorem

Let A be an abelian normal subgroup of G. Then $\chi(1) \mid [G:A]$, for all $\chi \in Irr(G)$.

Lemma

Let $N \trianglelefteq G$ and $\chi \in Irr(G)$. Let θ be an irreducible constituent of χ_N , where χ_N is the restriction of χ to N. Then $\frac{\chi(1)}{\theta(1)} \mid [G:N].$

Lemma

Let $N \leq G$ and let $\chi \in \operatorname{Irr}(G)$ such that $\chi_N = \theta \in \operatorname{Irr}(N)$. Then for $\beta \in \operatorname{Irr}(\frac{G}{N}), \beta \chi \in \operatorname{Irr}(G)$.

・ロト ・聞ト ・ヨト ・ヨト

Lemma

Let G be a finite solvable group of order $\prod_{i=1}^{n} p_i^{a_i}$, where $p_1, p_2, ..., p_n$ are distinct primes. If $kp_n + 1 \nmid p_i^{a_i}$ for each $i \leq n-1$ and k > 0, then the p_n -Sylow subgroup of G is normal in G.

Let G be a finite group and let $M \in \{M_{11}, M_{12}, M_{22}, M_{23}\}$. Then $G \cong M$ if and only if $\Delta(G) = \Delta(M)$ and |G| = |M|.

▲御▶ ▲ 国▶ ▲ 国▶

Step 1

 ${\cal G}$ is non-solvable.

<ロト <問ト < 回ト < 回ト

æ

Step 1

G is non-solvable.

Step 2

Let N be a normal minimal solvable subgroup of G. Then by considering Ito's Theorem and information about cd(G), we have |N|.

Step 1

G is non-solvable.

Step 2

Let N be a normal minimal solvable subgroup of G. Then by considering Ito's Theorem and information about cd(G), we have |N|.

Step 3

Let L/N be a normal minimal subgroup of G/N such that $L/N \leq C_G(N)N/N$. Then we prove that L/N is non-solvable.

Step 1

G is non-solvable.

Step 2

Let N be a normal minimal solvable subgroup of G. Then by considering Ito's Theorem and information about cd(G), we have |N|.

Step 3

Let L/N be a normal minimal subgroup of G/N such that $L/N \leq C_G(N)N/N$. Then we prove that L/N is non-solvable.

Step 4

L/N is isomorphic to M and so, $G \cong M$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

[1]

Y.G. Berkovich and E.M. Zhmud, Characters of finite groups, Part 1, 2. Amer. Math. Soc., Providence, Translations of Mathematical Monographs, Vols. 172, 181 (1997).

[2]

Z. Akhlaghi and H. P. Tong-Viet, Finite Groups with K4-Free Prime Graphs, *Algebr. Represent. Theor.*, **18** (2015) 235-256.

[3]

M. Herzog, On finite simple groups of order divisible by three primes only, *J. Algebra*, **120**(10) (1968) 383-388.

(日) (周) (日) (日)

[4]

S. Heydari and N. Ahanjideh, A characterization of $PGL(2, p^n)$ by some irreducible complex character degrees, *Publications de l'Institut Mathematique* doi: 10.2298/pim150111017h.

$\left[5\right]$

S. Heydari and N. Ahanjideh, Groups with the same complex group algebras as some extensions of $PSL(2, p^n)$, *Math. Slovaca*, accepted.

[6]

I.M. Isaacs, *Character theory of finite groups*, Academic Press, New York, 1976.

References

B. Khosravi, B. Khosravi and B. Khosravi and Z. Momen, Recognition by character degree graph and order of simple groups of order less than 6000, Miskolc Math. Notes, **15**(2) (2014) 537-544.

[8]

B. Khosravi, B. Khosravi, B. Khosravi and Z. Momen, Recognition of the Simple group $PSL(2, p^2)$ by character degree graph and order, *Monatsh Math.*, **178** (2) (2015) 251-257.

[9]

B. Khosravi, B. Khosravi and B. Khosravi, *Recognition of some simple groups by character degree graph and order, Math. Reports*, **18**(68) (2016) 51-61.

[10]

A.S. Kondratev and I.V. Khramtsov, On finite tetraprimary groups, *P. Steklov I. Math.*, **279(1)** (2012) 43-61.

[11]

O. Manz, W. Willems and T. R. Wolf, The diameter of the character degree graph, *J. Reine Angew. Math.*, **402** (1989) 181-198.

[12]

P.P. Palfy, On the character degree graph of solvable groups I: three primes, *Period. Math. Hung.*, **36** (1998) 61-65.

[13]

P.P. Palfy, On the character degree graph of solvable groups II: disconnected graphs, *Studia Sci. Math. Hung.*, **38** (2001) 339-355.

W.J. Shi, On simple K_4 -group, *Chin. Sci. Bull.*, **36** (1991) 1281-1283.

[15]

H.P. Tong-Viet, Finite groups whose prime graphs are regular, J. Algebra, **397** (2014) 18-31.

[16]

H.P. Tong-Viet, Groups whose prime graphs have no triangles, J. Algebra, **378** (2013) 196-206.

[17]

H.P. Tong-Viet, Simple classical groups of Lie type are determined by their character degrees, *J. Algebra*, **357** (2012) 61-68.

[18]

D.L. White, Degree graphs of simple orthogonal and symplectic groups, *J. Algebra*, **319** (2008) 833-845.

M.L. Lewis and D.L. White, Diameters of degree graphs of non-solvable groups II, J. Algebra, **312** (2007) 634-649.

Somayeh Heydari Some simple groups which are determined by

・ 同 ト ・ ヨ ト ・ ヨ ト

THANK YOU

Somayeh Heydari Some simple groups which are determined by