# The four color theorem and Thompson's F 

## Yuhei Inoue

Graduate School of Information Sciences,
Tohoku University

## Thompson's F

## Def(Thompson's F)

Condition Q

- $\varphi:[0,1] \rightarrow[0,1]$ is piecewise linear homeomorphism
- $\varphi$ is differentiable except at finitely $\frac{b}{2^{a}}$ form numbers $(a, b \in \mathbb{Z})$
- on differentiable interval of $\varphi$, the derivatives are powers of 2
$F:=\{\varphi \mid \varphi$ meets condition $Q\}$ is a group by composition of maps.

$$
F \cong\left\langle A, B \mid\left[A B^{-1}, A^{-1} B A\right],\left[A B^{-1}, A^{-2} B A^{2}\right]\right\rangle
$$

with $[x, y]=x y x^{-1} y^{-1}$
Cannon, J.W., Floyd, W.J., Parry, W.R.: Introductory notes on Richard Thompson's groups. Enseign. Math. (2) 42(3-4), 215-256 (1996)

## Four color theorem

Every planar graph has a face 4-coloring.


Let $F$ be Thompson's $F . \forall f \in F, f$ is colorable.

By Bowlin and Brin, 2013

## Binary trees

Def (Binary tree)
$\{0,1\}^{*}:=\{$ finite words in the alphabets 0 and 1$\} \cup\{\varnothing\}$
If a finite set $G$ satisfies these conditions as follows

1. $G \subset\{0,1\}^{*}, \emptyset \in G$,
2. $\forall w \in G,(w 0 \in G \wedge w 1 \in G) \vee(w 0 \notin G \wedge w 1 \notin G)$,
3. $w 0 \in G \vee w 1 \in G \Rightarrow w \in G$,
then we say that $G$ is a binary tree.

$E x: G=\{\varnothing, 0,1,00,01,000,001,10,11,110,111\}$

## Binary trees

Def (Binary tree)
$\{0,1\}^{*}:=\{$ finite words in the alphabets 0 and 1$\} \cup\{\varnothing\}$
If a finite set $G$ satisfies these conditions as follows

1. $G \subset\{0,1\}^{*}, \emptyset \in G$,
2. $\forall w \in G,(w 0 \in G \wedge w 1 \in G) \vee(w 0 \notin G \wedge w 1 \notin G)$,
3. $w 0 \in G \vee w 1 \in G \Rightarrow w \in G$, then we say that $G$ is a binary tree.

We should regard binary trees as knockout tournaments.


Ex: $G=\{\emptyset, 0,1,00,01,000,001,10,11,110,111\}$

## Binary trees

$$
T_{n}:=\{\text { binary trees having } n \text { leaves }\}
$$

$$
\begin{aligned}
& T_{1}=\{\mid\} \\
& T_{2}=\{ウ\} \\
& T_{3}=\left\{ウ, ~ ウ ウ_{\square}\right\}
\end{aligned}
$$

## Thompson's F

We can get a map $\varphi:[0,1] \rightarrow[0,1]$ from a pair of binary trees.


$$
\varphi(x)= \begin{cases}2 x & \text { if } x \in[0,1 / 4] \\ x+1 / 4 & \text { if } x \in[1 / 4,1 / 2] \\ x / 2+1 / 2 & \text { if } x \in[1 / 2,1]\end{cases}
$$

$\in F$

## $A H B$

$\forall A, B \in T_{n}$, we get 3 regular graph when connect $A$ and $B$.


## Thompson's F

## Def(Reduced pair)

Let $A, B \in T_{n}$. If $A \# B$ has no $C_{2}$, then we say the pair $(A, B)$ is reduced.

$$
r\left(T_{n}^{2}\right):=\left\{(A, B) \in T_{n} \times T_{n} \mid(A, B) \text { is reduced }\right\}
$$

Theorem(Bowlin, Brin, 2013)
Let $F$ be Thompson's $F$. There exists a bijection

$$
g: F \longrightarrow \bigcup_{n \in \mathbb{N}} r\left(T_{n}^{2}\right) .
$$

## Colorable



Def
Let $f \in F$ and $g(f)=(A, B)$.
If $A \# B$ has edge 3-coloring, we say $f$ is colorable.

## Rotation

## Def (Rotation)

Let $u \in\{0,1\}^{*}$. A map $\operatorname{rot}(u):\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ is defined such that

$$
\operatorname{rot}(u)(v)= \begin{cases}u 0 w & v=u 00 w \\ u 10 w & v=u 01 w \\ u 11 w & v=u 1 w \\ u & v=u 0 \\ u 1 & v=u \\ v & \text { otherwise }\end{cases}
$$

Fact

- Let $\mathrm{A} \in T_{n}$. If $w, w 0 \in A, \operatorname{rot}(w)(A) \in T_{n}$.
- $F \cong\langle\operatorname{rot}(\varnothing), \operatorname{rot}(1)\rangle$


## Weight

## Lemma

$\forall n \in \mathbb{N}, \forall A, B \in T_{n}, \exists k$ s.t. we can change $A$ into $B$ with $k$ times rotations.

## Def

Let $f \in F$ and $g(f)=(A, B)$.
$w(f):=\min \{k \mid$ we can change $A$ into $B$ with $k$ times rotations $\}$

## Result No. 1

Def

$$
F_{n}:=\left\{f \in F \mid g(f) \in T_{n} \times T_{n}\right\}
$$

## Theorem

Four color theorem holds if and only if
$\forall n \in \mathbb{N}, \forall f \in F_{n}$ such that $\mathrm{w}(f) \geq n-1$,
$f$ is colorable.

It is known that we can make a link with a pair of binary trees.


## Question: <br> What will happen if we append information about colorings?

## Hou to append

How do we append it?
We can attach + or - sign to each vertices with a coloring.


## How to append

$$
+\rightarrow \stackrel{1}{\square}
$$

$$
-\rightarrow \Gamma \mid \neg
$$



## Result No. 2

Def

$$
h:\left(\cup T_{n} \times T_{n}\right) \times\{\text { signs }\} \rightarrow\{\text { links }\}
$$

Theorem
$h$ is surjective.
Especially, for any knot $K$, there exists $f \in F$ and a sign $\sigma$ s.t $h(g(f), \sigma)=K$.


## Result No. 2

Def

$$
h:\left(\cup T_{n} \times T_{n}\right) \times\{\text { signs }\} \rightarrow\{\text { links }\}
$$

## Theorem

$h$ is surjective.

## Thank you for your attention!



