INTRODUCTION 00000 00	OUR MAIN RESULT 000 0000000	CONCLUSION	Connectivity of VC tractable graph classes o oo oo

COMPUTATIONAL COMPLEXITY OF THE VERTEX COVER PROBLEM FOR HIGHLY CONNECTED TRIANGULATIONS

Konstantin Kobylkin

Krasovsky Institute of Mathematics and Mechanics, Ekaterinburg, Russia Graphs and Groups, Spectra and Symmetries – 2016

26nd August 2016

COMPUTATIONAL COMPLEXITY OF THE VERTEX COVER PROBLEM FOR TRIANGUALTIONS

INTRODUCTION 00000 00	OUR MAIN RESULT	CONCLUSION	Connectivity of VC tractable graph classes 0 00 00

CONTENTS

1 INTRODUCTION

- Plane graphs: applications, problems and examples
- Vertex Cover problem (VC) for Delaunay triangulations

OUR MAIN RESULT

• VC hardness for 4-connected Delaunay triangulations

・ロト ・同ト ・ヨト ・ヨト

Hardness proof sketch

3 CONCLUSION

- CONNECTIVITY OF **VC** TRACTABLE GRAPH CLASSES
 - High connectivity and low complexity of VC?
 - Outerplanar triangulations
 - Chordal triangulations

INTRODUCTION	OUR MAIN RESULT	CONCLUSION	CONNECTIVITY OF VC TRACTABLE GRAPH CLASSES
00000			
00	0000000		00

PLANE (GEOMETRIC) GRAPHS: DEFINITION

PLANE (GEOMETRIC) GRAPH

A triple G = (V, E, F) is called a *plane* graph if:

- $V \subset \mathbb{R}^2$
- the set *E* consists of nondegenerate straight line segments, crossing only at their endpoints
- *F* denotes the set of all open (in ℝ²) regions bounded by segments from *E* and points of *V* : each *f* ∈ *F* does not intersect with any segment from *E* and does not contain points of *V*

The only unbounded set $f_{\infty} \in F$ is named as the *outer* face whereas bounded ones from *F* are *inner* faces.

INTRODUCTION	OUR MAIN RESULT	CONCLUSION	CONNECTIVITY OF VC TRACTABLE GRAPH CLASSES
0000	000		
00	0000000		00
			00

APPLICATIONS OF PLANE (GEOMETRIC) GRAPHS

Spatial networks have their nodes:

- distributed in some geographical area
- communicating with each other through physical links
- can be modeled by plane graphs

ROAD NETWORKS

- network nodes are cities
- links denote high speed roads

INTRODUCTION	OUR MAIN RESULT	CONCLUSION	CONNECTIVITY OF VC TRACTABLE GRAPH CLASSES
00000 00	000 0000000		0 00 00

PROBLEMS FOR SPATIAL NETWORKS

NETWORK MONITORING

Given a road network, locate positions for policemen at the road crossings such that each road section is monitored by some policeman.

- road crossings are modeled by points on the plane
- road sections are given in the form of straight line segments
- policemen are placed at the network nodes
- Network monitoring problem can be formulated as the Vertex Cover Problem on the respective plane graph

(D) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

INTRODUCTION	OUR MAIN RESULT 000 0000000	CONCLUSION	Connectivity of VC tractable graph classes o oo oo

SPATIAL NETWORK MODELS

Rough but tractable models of complex network topologies are used in a form of proximity graphs:

- fitting Gabriel graphs to street networks (Maniadakis 2014)
- approximating road networks with β-skeletons (Watanabe 2010)
- efficient routing algorithms for usual and special Delaunay triangulations (Bose 2001, 2012)

イロト イポト イヨト イヨト

INTRODUCTION	OUR MAIN RESULT	CONCLUSION	CONNECTIVITY OF VC TRACTABLE GRAPH CLASSES
0000● 00	000 0000000		o oo oo

EXAMPLES OF PROXIMITY GRAPHS

DELAUNAY TRIANGULATION

Let $S \subset \mathbb{R}^2$ be a finite set of points in general position, no 4 of which are cocircular. We call a plane graph G = (V, E, F) by a *Delaunay triangulation* if V = S, $e = [u, v] \in E$ iff there is a disk d(u, v) such that $u, v \in \operatorname{bd} d(u, v)$ and $S \cap \operatorname{int} d(u, v) = \emptyset$.

INTRODUCTION ○○○○○ ●○	OUR MAIN RESULT 000 0000000	CONCLUSION	Connectivity of VC tractable graph classes 0 00 00

VERTEX COVER PROBLEM (VC) FOR DELAUNAY TRIANGULATIONS

BASIC PROBLEM

VERTEX COVER PROBLEM (VC)

Given a simple graph G = (V, E) find the smallest cardinality subset $V' \subseteq V$ such that $V' \cap e \neq \emptyset$ for every $e = \{u, v\} \in E$.

OUR QUESTIONS AND MOTIVATION

- what is the **VC** problem computational complexity in the case where *G* belongs to the class of usual and special Delaunay triangulations?
- as we mentioned above, usual and special Delaunay triangulations are convenient models of network topologies
- thus, studying the VC problem complexity is of interest for the class of DT!

INTRODUCTION ○○○○○ ○●	OUR MAIN RESULT 000 0000000	CONCLUSION	Connectivity of VC tractable graph classes 0 00 00

VERTEX COVER PROBLEM (VC) FOR DELAUNAY TRIANGULATIONS

BASIC PROBLEM

VERTEX COVER PROBLEM (VC)

Given a simple graph G = (V, E) find the smallest cardinality subset $V' \subseteq V$ such that $V' \cap e \neq \emptyset$ for every $e = \{u, v\} \in E$.

Combining results [Bodlaender, 1998] and [Dillencourt, 1990]:

RELATED WORK

VC is polynomially solvable in the class of outerplane Delaunay triangulations of the form G = (V, E) such that every $v \in V$ is also a vertex of conv *V*.

イロト イポト イヨト イヨト

INTRODUCTION	OUR MAIN RESULT	CONCLUSION	CONNECTIVITY OF VC TRACTABLE GRAPH CLASSES
00000 00	• 00 0000000		0 00 00

VC HARDNESS FOR 4-CONNECTED DELAUNAY TRIANGULATIONS

SPECIAL DELAUNAY TRIANGULATIONS

Let $\nabla(p, \lambda) = p + \lambda \nabla = \{x \in \mathbb{R}^2 : x = p + \lambda a, a \in \nabla\}$ for some $p \in \mathbb{R}^2$ and $\lambda > 0$ where ∇ is the unit sided oriented equilateral triangle whose barycenter is the origin and one of its vertices is on the negative *y*-axis.

TD-DELAUNAY TRIANGULATION

Let $S \subset \mathbb{R}^2$ be a set of points, straight line through any pair uand v from S makes neither of angles $0^\circ, 60^\circ, 120^\circ$ with horizontal. A plane graph G = (V, E, F) with V = S is called a *TD-Delaunay triangulation* iff $e = [u, v] \in E$ whenever there exists $p \in \mathbb{R}^2$ and $\lambda > 0$ such that $u, v \in bd \nabla(p, \lambda)$ and $S \cap int \nabla(p, \lambda) = \emptyset$.

・ロト ・四ト ・ヨト ・ヨト

INTRODUCTION	OUR MAIN RESULT	CONCLUSION	CONNECTIVITY OF VC TRACTABLE GRAPH CLASSES
00000 00	000 000000		0 00 00

VC HARDNESS FOR 4-CONNECTED DELAUNAY TRIANGULATIONS

SPECIAL DELAUNAY TRIANGULATIONS

TD-DELAUNAY TRIANGULATION

Let $S \subset \mathbb{R}^2$ be a set of points. A plane graph G = (V, E, F) with V = S is called a *TD-Delaunay triangulation* iff $e = [u, v] \in E$ whenever there exists $p \in \mathbb{R}^2$ and $\lambda > 0$ such that $u, v \in bd \nabla(p, \lambda)$ and $S \cap int \nabla(p, \lambda) = \emptyset$.

INTRODUCTION	OUR MAIN RESULT	CONCLUSION	CONNECTIVITY OF VC TRACTABLE GRAPH CLASSES
00000	000		
00	000000		00

VC HARDNESS FOR 4-CONNECTED DELAUNAY TRIANGULATIONS

HARDNESS FOR TD-DELAUNAY TRIANGULATIONS

OUR MAIN GEOMETRIC RESULT

The **VC** problem is strongly NP-hard within the class of 4-connected TD-Delaunay triangulations whose degree is of the order $O(\log n)$, where *n* is the number of triangulation vertices.

COMPUTATIONAL COMPLEXITY OF THE VERTEX COVER PROBLEM FOR TRIANGUALTIONS

INTRODUCTION 00000 00	OUR MAIN RESULT ○○○ ●○○○○○○	CONCLUSION	Connectivity of VC tractable graph classes o oo oo

Some definitions

PLANAR TRIANGULATION

A planar graph is called a planar triangulation if it admits an embedding in the form of a plane graph G = (V, E, F) whose faces are triangles except for possibly the outer one.

00	INTRODUCTION 00000 00	Our main result ○○○ ○●○○○○○	CONCLUSION	Connectivity of VC tractable graph classes o oo oo
----	-----------------------------	-----------------------------------	------------	---

HARDNESS PROOF SKETCH

First, we get the following result.

OUR MAIN COMBINATORIAL RESULT

The **VC** problem is strongly NP-hard within the class of 4-connected planar triangulations with triangular outer face whose degree is of the order $O(\log n)$.

Next, we apply the result from graph drawing.

BONICHON, 2010

Every planar triangulation with triangular outer face can be embedded on the plane in the form of TD-Delaunay triangulation in polynomial time and space.

|--|--|

HARDNESS PROOF SKETCH

OUR MAIN COMBINATORIAL RESULT

The **VC** problem is strongly NP-hard in the class of 4-connected planar triangulations with triangular outer face whose degree is of the order $O(\log n)$.

DILLENCOURT, 1996

Every 4-connected planar triangulation with triangular outer face can be embedded on the plane in the form of Delaunay triangulation (possibly not in polynomial time and space).

CONJECTURE

The **VC** problem is strongly NP-hard within the class of 4-connected Delaunay triangulations.

INTRODUCTION	OUR MAIN RESULT	CONCLUSION	CONNECTIVITY OF VC TRACTABLE GRAPH CLASSES
00000 00	000 0000000		0 00 00

OUR HARDNESS PROOF TECHNIQUE AND RELATED ONES

Mohar, 2001

Maximum Independent Set problem (**MIS**) is strongly NP-hard in the class of 2-connected 3-regular planar graphs.

INDEPENDENT SET

Given a graph G = (V, E), a set $V' \subseteq V$ is called independent if no two vertices of V' are adjacent.

INTRODUCTION	OUR MAIN RESULT	CONCLUSION	CONNECTIVITY OF VC TRACTABLE GRAPH CLASSES
00000 00	000 0000000		0 00 00

OUR HARDNESS PROOF TECHNIQUE AND RELATED ONES

Mohar, 2001

Maximum Independent Set problem (**MIS**) is strongly NP-hard in the class of 2-connected 3-regular planar graphs.

DA LOZZO, RUTTER, 2016 (UNPUBLISHED)

MIS and **VC** are strongly NP-hard in the class of 3-connected planar triangulations with triangular outer face.

Their construction starts from 2-connected 3-regular planar graph by sequentially replacing nontriangular faces with special triangulated gadgets.

(D) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

INTRODUCTION	OUR MAIN RESULT	CONCLUSION	CONNECTIVITY OF VC TRACTABLE GRAPH CLASSES
00000 00	000 0000000		0 00 00

OUR HARDNESS PROOF TECHNIQUE AND RELATED ONES

Mohar, 2001, dual form

Maximum Facial Independent Set problem (**Facial MIS**) is strongly NP-hard in the class of planar triangulations (possibly containing parallel edges).

FACIAL INDEPENDENT SET

Given a plane embedding G = (V, E, F), a set $F' \subseteq F$ of faces is independent if no pair $f_1, f_2 \in F'$ shares an edge.

INTRODUCTION	OUR MAIN RESULT	CONCLUSION	CONNECTIVITY OF VC TRACTABLE GRAPH CLASSES
00000 00	000 000000		0 00 00

OUR HARDNESS TECHNIQUE AND RELATED ONES

Mohar, 2001, dual form

Maximum Facial Independent Set problem (**Facial MIS**) is strongly NP-hard in the class of planar triangulations (possibly containing parallel edges).

COMPARISON OF OUR TECHNIQUE WITH RELATED ONES

- our (nonseq.) construction uses dual form of Mohar result
- it leads to the hardness result in the narrower class of 4-connected triangulations (isomorphic to Delaunay triangulations) in contrast to Da Lozzo's construction which creates triangulations having non-facial 3-cycles
- it gives $O(\log n)$ bound on the triangulation degree

600 ····	INTRODUCTION 00000 00	OUR MAIN RESULT 000 0000000	CONCLUSION	Connectivity of VC tractable graph classes 0 00 00
----------	-----------------------------	-----------------------------------	------------	---

SUMMARY

- hardness of the VC problem is proved for 4-connected planar and TD-Delaunay triangulations
- hardness of VC for Delaunay triangulations is likely to hold

INTRODUCTION	OUR MAIN RESULT	CONCLUSION	CONNECTIVITY OF VC TRACTABLE GRAPH CLASSES
00000 00	000 0000000		• 00 00

HIGH CONNECTIVITY AND LOW COMPLEXITY OF VC?

HIGH CONNECTIVITY AND LOW COMPLEXITY OF VC?

QUESTION

- VC has high complexity for highly connected planar triangulations
- what is the connectivity of triangulations from the graph classes for which **VC** is polynomially solvable ?

INTRODUCTION	OUR MAIN RESULT	CONCLUSION	CONNECTIVITY OF VC TRACTABLE GRAPH CLASSES
00000 00	000 0000000		

OUTERPLANAR TRIANGULATIONS

CONNECTIVITY OF OUTERPLANAR TRIANGULATIONS

OUTERPLANAR TRIANGULATION

A 2-connected planar triangulation is called outerplanar if it admits an embedding in the form of a plane graph G = (V, E, F) where the set V is contained on the boundary of its outer face $f_{\infty} \in F$.

	INTRODUCTION 00000 00	OUR MAIN RESULT 000 0000000	CONCLUSION	Connectivity of VC tractable graph classes ○ ○● ○○
--	-----------------------------	-----------------------------------	------------	---

OUTERPLANAR TRIANGULATIONS

CONNECTIVITY OF OUTERPLANAR TRIANGULATIONS

OUTERPLANAR TRIANGULATION

A 2-connected planar triangulation is called outerplanar if it admits an embedding in the form of a plane graph G = (V, E, F) where the set V is contained on the boundary of its outer face $f_{\infty} \in F$.

BODLAENDER, 1998

The **VC** problem is polynomially solvable in linear time in the class of outerplanar triangulations.

CONNECTIVITY OF OUTERPLANAR TRIANGULATIONS Outerplanar triangulations can not be 4-connected.

INTRODUCTION 00000 00	OUR MAIN RESULT 000 0000000	CONCLUSION	Connectivity of VC tractable graph classes ○ ○○ ●○

CHORDAL TRIANGULATIONS

CONNECTIVITY OF CHORDAL TRIANGULATIONS

CHORDAL TRIANGULATION

A 3-connected planar triangulation is called chordal if each its cycle of length more than 3 has a chord, i.e., a graph edge which connects two non-consecutive vertices of that cycle.

• • = • • = •

COMPUTATIONAL COMPLEXITY OF THE VERTEX COVER PROBLEM FOR TRIANGUALTIONS

INTRODUCTION	OUR MAIN RESULT 000 0000000	CONCLUSION	Connectivity of VC tractable graph classes o o o

CHORDAL TRIANGULATIONS

CONNECTIVITY OF CHORDAL TRIANGULATIONS

CHORDAL TRIANGULATION

A 3-connected planar triangulation is called chordal if each its cycle of length more than 3 has a chord, i.e., a graph edge which connects two non-consecutive vertices of that cycle.

GAVRIL, 1972

The **VC** problem is polynomially solvable in the class of chordal triangulations.

CONNECTIVITY OF CHORDAL TRIANGULATIONS Chordal triangulations can not be 4-connected for n > 4.