Strongly regular graphs with the same parameters as the symplectic graph

Sho Kubota

Graduate School of Information Sciences Tohoku University

August 20, 2016 Graphs and Groups, Spectra and Symmetries Novosibirsk State University

Equitable partitions

X : a graph $\pi = \{C_1, \dots, C_t\}$: a partition of V(X) π is called an equitable partition if $\forall i, j \in [t], \forall x, x' \in C_i$,

$$|N(x) \cap C_j| = |N(x') \cap C_j|.$$

Equitable partitions

$$X$$
: a graph
 $\pi = \{C_1, \dots, C_t\}$: a partition of $V(X)$
 π is called an equitable partition if $\forall i, j \in [t]$, $\forall x, x' \in C_i$,

$$|N(x) \cap C_j| = |N(x') \cap C_j|.$$

Example

- G : a subgroup of Aut(X)
- π : the orbit partition of ${\it G}$

 $\implies \pi$ is an equitable partition.

Theorem 1 (Godsil-McKay, 1982)

X : a graph

 $\pi = \{C_1, \ldots, C_t, D\}$: a partition of V(X)Assume that π satisfies

{C₁,..., C_t} is an equitable partition of V(X) \ D,
∀x ∈ D, ∀i ∈ [t], |N(x) ∩ C_i| = 0, ½|C_i| or |C_i|.
Construct a new graph X' by interchanging adjacency

and nonadjacency between $x \in D$ and the vertices in C_i whenever x has $\frac{1}{2}|C_i|$ neighbors in C_i .

 \implies Spec(X) = Spec(X')

We will call this special cell D a GM cell.

- X : a SRG
- X': a graph obtained from X by an operation s.t.

$$\operatorname{Spec}(X') = \operatorname{Spec}(X) \text{ (and } X' \not\simeq X)$$

X': a graph obtained from X by an operation s.t.

$$\operatorname{Spec}(X') = \operatorname{Spec}(X) \text{ (and } X' \not\simeq X)$$

 \Downarrow

X' is also a SRG with the same parameters as X.

X': a graph obtained from X by an operation s.t.

$$\operatorname{Spec}(X') = \operatorname{Spec}(X) \text{ (and } X' \not\simeq X)$$
 \Downarrow

X' is also a SRG with the same parameters as X. "an operation" = GM switching

X': a graph obtained from X by an operation s.t.

$$\operatorname{Spec}(X') = \operatorname{Spec}(X) \text{ (and } X' \not\simeq X)$$
 \Downarrow

X' is also a SRG with the same parameters as X. "an operation" = GM switching w.r.t. an orbit partition

X': a graph obtained from X by an operation s.t.

$$\operatorname{Spec}(X') = \operatorname{Spec}(X) \text{ (and } X' \not\simeq X)$$
 \Downarrow

X' is also a SRG with the same parameters as X. "an operation" = GM switching w.r.t. an orbit partition

What SRG do we consider? \rightarrow The symplectic graph.

The symplectic graphs

Let
$$R = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

The symplectic graph $Sp(2\nu, 2)$ over \mathbb{F}_2 is the graph defined by the following:

$$V(Sp(2\nu, 2)) = \mathbb{F}_2^{2\nu} \setminus \{\mathbf{0}\},$$

$$E(Sp(2\nu, 2)) = \{xy \mid x^T K y = 1\},$$

where $K = I_{\nu} \otimes R$.

Proposition 2

The symplectic graph
$$Sp(2\nu, 2)$$
 is a SRG with parameters $(2^{2\nu} - 1, 2^{2\nu-1}, 2^{2\nu-2}, 2^{2\nu-2})$

Sho Kubota (Tohoku University)

Aut $(Sp(2\nu, 2)) \simeq \{A \in GL_{2\nu}(\mathbb{F}_2) \mid A^T K A = K\}.$

But $Sp(2\nu, 2)$ is vertex-transitive.

Aut $(Sp(2\nu, 2)) \simeq \{A \in GL_{2\nu}(\mathbb{F}_2) \mid A^T K A = K\}.$

But $Sp(2\nu, 2)$ is vertex-transitive.

We consider GM switching w.r.t. an orbit partition.

Theorem 3 (Tang and Wan, 2006)

Aut $(Sp(2\nu, 2)) \simeq \{A \in GL_{2\nu}(\mathbb{F}_2) \mid A^T K A = K\}.$

But $Sp(2\nu, 2)$ is vertex-transitive.

We consider GM switching w.r.t. an orbit partition.

We must choose proper subgroups of $Aut(Sp(2\nu, 2))$.

Aut $(Sp(2\nu, 2)) \simeq \{A \in GL_{2\nu}(\mathbb{F}_2) \mid A^T K A = K\}.$

But $Sp(2\nu, 2)$ is vertex-transitive.

We consider GM switching w.r.t. an orbit partition.

We must choose proper subgroups of $Aut(Sp(2\nu, 2))$.

Aut $(Sp(2\nu, 2)) \simeq \{A \in GL_{2\nu}(\mathbb{F}_2) \mid A^T K A = K\}.$

But $Sp(2\nu, 2)$ is vertex-transitive.

We consider GM switching w.r.t. an orbit partition.

We must choose proper subgroups of $Aut(Sp(2\nu, 2))$. \downarrow $Aut(Sp(2\nu, 2))_{\mathcal{E}} \quad Aut(Sp(2\nu, 2))_{\mathcal{S}}$

Fixing a special 4-subset

 $X = Sp(2\nu, 2)$ v_1, v_2, v_3 : three distinct vertices of V(X) s.t.

• They are linearly independent

•
$$v_i^T K v_j = 0 \; (\forall i, j \in [3])$$

 $S = \{v_1, v_2, v_3, v_4\}$, where $v_4 = v_1 + v_2 + v_3$. We consider the action of $Aut(X)_S$.

What we should do

- Determination of the orbit partition of $Aut(X)_S$
- Finding GM cells

Abiad and Haemers considered the following partition.

 $\{S,V(X)\setminus S\}$

Abiad and Haemers considered the following partition.

{*S*,*V*(*X*) \ *S*} ↑ GM cell

They obtained many SRGs with the same parameters as $Sp(2\nu, 2)$.

The orbit partition of $Aut(X)_S$

$$\begin{aligned} & x \in V(X). \\ & \text{Since } x^T K v_1 + x^T K v_2 + x^T K v_3 + x^T K v_4 = x^T K \mathbf{0} = 0, \\ & \#\{i \in [4] \, | \, x^T K v_i = 1\} = 0, 2, 4. \end{aligned}$$

The orbit partition of $Aut(X)_S$

$$\begin{aligned} & x \in V(X). \\ & \text{Since } x^T K v_1 + x^T K v_2 + x^T K v_3 + x^T K v_4 = x^T K \mathbf{0} = 0, \\ & \#\{i \in [4] \, | \, x^T K v_i = 1\} = 0, 2, 4. \end{aligned}$$

Thus,

$$V(X) = S_0 \sqcup S_2 \sqcup S_4,$$

where $S_i = \{x \in V(X) \mid \#\{j \in [4] \mid x^T K v_j = 1\} = i\}.$

The orbit partition of $Aut(X)_S$

$$x \in V(X).$$

Since $x^T K v_1 + x^T K v_2 + x^T K v_3 + x^T K v_4 = x^T K \mathbf{0} = 0$,
 $\#\{i \in [4] \mid x^T K v_i = 1\} = 0, 2, 4.$

Thus,

$$V(X) = S_0 \sqcup S_2 \sqcup S_4,$$

where $S_i = \{x \in V(X) \mid \#\{j \in [4] \mid x^T K v_j = 1\} = i\}.$
Note that $S, \langle S \rangle \subset S_0$ and $\langle S \rangle^g = \langle S \rangle$ for $g \in Aut(X)_S.$

Proposition 4

The orbit partition of
$$V(X)$$
 of $\operatorname{Aut}(X)_S$ is
 $\{S, T, S_0 \setminus (S \cup T), S_2, S_4\},$
where $T = \langle S \rangle \setminus (S \cup \{\mathbf{0}\}) = \{v_1 + v_2, v_2 + v_3, v_3 + v_1\}.$

Finding GM cells

$\{S, T, S_0 \setminus (S \cup T), S_2, S_4\}$

Finding GM cells

$\{S, T, S_0 \setminus (S \cup T), S_2, S_4\}$

$\{S, T, S_0 \setminus (S \cup T), S_2, S_4\}$ We obtain three switched graphs $X^S, X^{S_0 \setminus (S \cup T)}, X^{S_4}$. Actually,

 $X^{S} \simeq$ switched $Sp(2\nu, 2)$ by Abiad and Haemers.

Four graphs $X, X^S, X^{S_0 \setminus (S \cup T)}, X^{S_4}$ are not isomorphic ?

Four graphs $X, X^{S}, X^{S_0 \setminus (S \cup T)}, X^{S_4}$ are not isomorphic ?

 \rightarrow We consider the number of common neighbors of three vertices.

Four graphs
$$X, X^{S}, X^{S_0 \setminus (S \cup T)}, X^{S_4}$$
 are not isomorphic ?

 \rightarrow We consider the number of common neighbors of three vertices.

$$X$$
 : a graph
For $x, y, z \in V(X)$, define

$$\mathcal{N}_X[xy|z] = \left\{ w \in V(X) \setminus \{x, y, z\} \middle| \begin{array}{l} w \sim x, \\ w \sim y, \\ w \not\sim z \end{array} \right\}$$

Four graphs
$$X, X^S, X^{S_0 \setminus (S \cup T)}, X^{S_4}$$
 are not isomorphic ?

 \rightarrow We consider the number of common neighbors of three vertices.

X : a graph For $x, y, z \in V(X)$, define

$$\mathcal{N}_X[xy|z] = \left\{ w \in V(X) \setminus \{x, y, z\} \middle| \begin{array}{l} w \sim x, \\ w \sim y, \\ w \not\sim z \end{array} \right\}$$

 $|\mathcal{N}_X[xyz|]| = \#$ common neighbors of three vertices in X

Sho Kubota (Tohoku University)

X : a graph $\pi = \{C_1, \dots, C_t, C_{t+1}\}$: an orbit partition Assume that π has a GM cell $D = C_{t+1}$. X: a graph $\pi = \{C_1, \ldots, C_t, C_{t+1}\}$: an orbit partition Assume that π has a GM cell $D = C_{t+1}$. For any $i \in [t]$,

$$\{|N(x) \cap C_i| | x \in D\} = \{0\}, \left\{\frac{1}{2}|C_i|\right\} \text{ or } \{|C_i|\},$$

SO

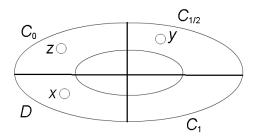
$$[t] = \mathcal{C}_0 \sqcup \mathcal{C}_{rac{1}{2}} \sqcup \mathcal{C}_1,$$

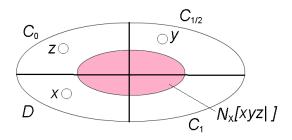
where $\mathcal{C}_j = \left\{ i \in [t] \ \Big| \ |\mathcal{N}(x) \cap \mathcal{C}_i| = j |\mathcal{C}_i| \ (\forall x \in D)
ight\}.$

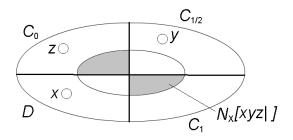
X': the switched graph x, y, z : three distinct vertices of V(X)The set of pairs of vertices involved with switching is

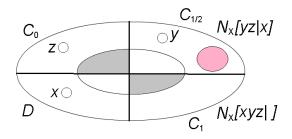
$$\bigsqcup_{i\in\mathcal{C}_{\frac{1}{2}}}\left\{\left\{v,w\right\} \mid v\in D,w\in C_{i}\right\}.$$

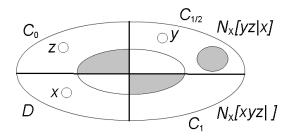
Considering above, we have to consider many cases to find $|\mathcal{N}_{X'}[xyz|]|$, but in this talk, we introduce a special case.

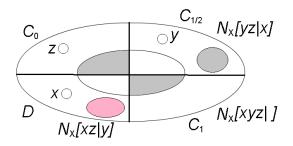


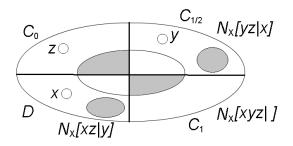


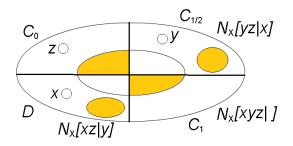












Therefore, $|\mathcal{N}_{X'}[xyz|]|$ is equal to

$$\sum_{i \in \mathcal{C}_0 \sqcup \mathcal{C}_1} |C_i \cap \mathcal{N}_X[xyz|]| + \sum_{i \in \mathcal{C}_{\frac{1}{2}}} |C_i \cap \mathcal{N}_X[yz|x]| + |D \cap \mathcal{N}_X[xz|y]|$$

The non-zero minimum number

We investigate the non-zero minimum number of common neighbors of three distinct vertices. As a result,

The non-zero minimum number

We investigate the non-zero minimum number of common neighbors of three distinct vertices. As a result,

$$\begin{array}{c|c|c|c|c|c|c|c|c|} X & X^{S} & X^{S_0 \setminus (S \cup T)} & X^{S_4} \\ \hline 2^{2\nu-3} & 1 & 2^{2\nu-5}-2 & 2^{2\nu-5} \end{array}$$

The four graphs are not isomorphic to each other.

The non-zero minimum number

We investigate the non-zero minimum number of common neighbors of three distinct vertices. As a result,

$$\begin{array}{c|c|c|c|c|c|c|c|c|} X & X^{S} & X^{S_0 \setminus (S \cup T)} & X^{S_4} \\ \hline 2^{2\nu-3} & 1 & 2^{2\nu-5}-2 & 2^{2\nu-5} \end{array}$$

The four graphs are not isomorphic to each other.

Thank you for attention !!