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Strongly regular graphs

A SRG(v , k ,�, µ) is a simple undirected k-regular graph with v

vertices such that

two adjacent vertices have � common neighbors,

two non-adjacent vertices have µ common neighbors.

Example: The Petersen graph.

Petersen = L(K
5

) = T (5) = J(5, 2)

is a SRG(10,3,0,1).
(line graph of complete, triangular, Johnson)
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L(K6) = T (6) = J(6, 2)
�6
2

�
= 15

SRG(v = 15, k = 8,� = 4, µ = 4)
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L(K6) = T (6) = J(6, 2) SRG(15, 8, 4, 4)

Let A be the adjacency matrix, and let C ⇢ F15

2

be the span of the
row vectors of A over F

2

.
Then dimC = 4.

In general, for T (n),

Tonchev (1988), Brouwer-van Eijl (1992): dimC ,

Haemers, Peeters and van Rijckevorsel (1999): weight
distribution
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Even, doubly even, and triply even

The weight wt(x) of a vector x 2 Fn
2

is the number of 10s in its
entries: wt(1, 1, 0, 1, 0) = 3.

We say that a vector x 2 Fn
2

is

even () wt(x) ⌘ 0 (mod 2)

doubly even () wt(x) ⌘ 0 (mod 4)

triply even () wt(x) ⌘ 0 (mod 8)

A. Munemasa (Tohoku University) Triply even codes G2S2 2016 5 / 17



Even, doubly even, and triply even

The weight wt(x) of a vector x 2 Fn
2

is the number of 10s in its
entries: wt(1, 1, 0, 1, 0) = 3.

We say that a vector x 2 Fn
2

is

even () wt(x) ⌘ 0 (mod 2)

doubly even () wt(x) ⌘ 0 (mod 4)

triply even () wt(x) ⌘ 0 (mod 8)

A. Munemasa (Tohoku University) Triply even codes G2S2 2016 5 / 17



Even, doubly even, and triply even codes

A binary linear code C of length n is a linear subspace of Fn
2

.

C is called

even () x is even (8x 2 C )

doubly even () x is doubly even (8x 2 C )

triply even () x is triply even (8x 2 C )

If C is generated by a set of vectors r
1

, . . . , rk , then
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Doubly even codes

If C is generated by a set of vectors r
1

, . . . , rk , then C is doubly even
i↵,

(i) ri is doubly even for all i 2 {1, . . . , k},
(ii) wt(ri ⇤ rj) ⌘ 0 (mod 2) for all i , j 2 {1, . . . , k}.

This is because the mapping

f : {even vectors in Fn
2

} ! F
2

defined by

f : x 7! wt(x)

2
mod 2

is a quadratic form.

f (
kX

i=1

ai ri) =
kX

i=1

a

2

i f (ri) +
X

i<j

aiaj wt(ri ⇤ rj).
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L(K6) = T (6) = J(6, 2) SRG(15, 8, 4, 4)

Let A be the adjacency matrix, and let C ⇢ F15

2

be the span of the
row vectors r

1

, . . . , r
15

of A over F
2

.

(i) wt(ri) = 8 ⌘ 0 (mod 4), so ri is doubly even

(ii) wt(ri ⇤ rj) = 4 ⌘ 0 (mod 2)

for all i , j 2 {1, . . . , 15} with i 6= j .

So C is doubly even.

Property too strong for the conclusion?

Do these property imply C is triply even? No, in general. We need:

(iii) wt(rh ⇤ ri ⇤ rj) ⌘ 0 (mod 2) for all h, i , j 2 {1, . . . , k}.
The number of common neighbors of three vertices ⌘ 0 (mod 2)
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L(K6) = T (6) = J(6, 2) SRG(15, 8, 4, 4)
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Code of T (4n + 2) is triply even

The code C generated by the row vectors of the adjacency matrix of
T (4n + 2) is triply even.

dimC = n � 2.
Note

rate =
dimC

length
=

n � 2�
4n+2

2

� ! 0 (n ! 1).

Theorem (Betsumiya–M., 2012)
The code C generated by the row vectors of the adjacency matrix of

T (4n + 2) is a maximal triply even code.

Sharp contrast with doubly even codes: rate is always ⇡ 1/2.
There are triply even codes with rate 1/4 whenenver n ⌘ 0 (mod 16).
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Classification of triply even codes of length 48

Theorem (Betsumiya–M., 2012)
There are 10 maximal triply even codes of length 48.

9 comes from the classification of doubly even codes of length 24
classified by Pless–Sloane (1975), and the code of T (10) extended by
the all-one vector is the only other code.

Motivation comes from Framed Vertex Operator Algebras (FVOA).

The moonshine module V

\ has Virasoro frames, and each
Virasoro frame gives rise to a triply even code of length 48.

Lam–Yamauchi (2008) showed that, conversely, every triply even
code of length divisible by 16 is obtained from some FVOA.

The classification lead Lam and Shimakura to discover new
FVOA⇡CFT conjectured by Schellekens (1993).
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S6 ⇠= Sp(4, 2) ⇠
=

PGO�
4 (3)

Let V = F4

3

be equipped with a nondegenerate quadratic form with
Witt index 1, for example

Q(x
1

, x
2

, x
3

, x
4

) = x

1

x

2

+ x

2

3

+ x

2

4

.

X = {{±x} | Q(x) = 1}.

Then |X | = 15 =
�
6

2

�
.

{±x} ⇠ {±y}
() Q(x ± y) = 0

() the line through hxi and hyi is a “tangent”

() the line hx , yi and the surface Q = 0 in PG (3, 3)

has exactly one point in common
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PGO�
4 (q), q an odd prime power

Let V = F4

q be equipped with a nondegenerate quadratic form with
Witt index 1, for example, with ⌘ /2 (F⇥

q )
2,

Q(x
1

, x
2

, x
3

, x
4

) = x

1

x

2

+ x

2

3

� ⌘x2
4

,

X = {{±x} | Q(x) = 1}.

Then |X | = q(q2 + 1)/2. Adjacency by tangent. Not SRG unless
q = 3. Brouwer–Cohen–Neumaier, Section 12.2 shows this is a
3-class association scheme.

Theorem (Betsumiya–M.)
For any odd prime power q, the code of this graph is triply even, of

dimension at least (q2 � 1)/2.
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Proof: k ,�, µ (BCN, Section 12.2)

Let V = F4

q be equipped with a nondegenerate quadratic form Q

with Witt index 1. Define a graph � whose vertex set is

X = {{±x} | Q(x) = 1},

with adjacency

{±x} ⇠ {±y} () B(x , y) = ±1,

where
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Proof: the number of common neighbors of three

vertices is even

Let hx
1

i, hx
2

i, hx
3

i be distinct vertices, Their common neighbors are

{hzi | Q(z) = 1, B(xi , z) = ±1 (i = 1, 2, 3)}.

For simplicity, assume W = hx
1

, x
2

, x
3

i is a nondegenerate
3-dimensional subspace, and consider

{hzi | Q(z) = 1, B(xi , z) = 1 (i = 1, 2, 3)}.

Since 9!x
0

2 W with B(xi , x0) = 1 (i = 1, 2, 3),
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Dimension� (q2 � 1)/2

V = F4

q is equipped with a nondegenerate quadratic form Q with
Witt index 1. The vertex set of � is X = {{±x} | Q(x) = 1}, with
adjacency

{±x} ⇠ {±y} () B(x , y) = ±1,

We claim � has induced q+1

2

Kq�1

. Write V = V

+

� V�, where
dimV± = 2, V

+

contains a nonzero vector x with Q(x) = 0, V� is
anisotropic. The following subset of vertices induces q+1

2

Kq�1

:

Y = {h�x + yi | � 2 F⇥
q , y 2 V�, Q(y) = 1}

= {h�x + yii | � 2 F⇥
q , 1  i  (q + 1)/2},

since

B(�x + yi , µx + yj) = B(yi , yj) =

(
1 if i = j ,

not ± 1 otherwise.
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Maximality?

Since dimC � (q2 � 1)/2, the rate is at least

q2�1

2

q(q2+1)

2

=
q

2 � 1

q(q2 + 1)
! 0 (q ! 1).

Are they maximal?

cf. For T (4n + 2), the rate is

n � 2�
4n+2

2

� .

Thank you for your attention!
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