Background and basic definitions	Main results, 1	Concept of Hoffman graphs	Structure theorem of Hoffman graphs	Main results,

A generalization of a theorem of Hoffman

Jack Koolen (Joint work with Jae Young Yang and Qianqian Yang)

Univiersity of Technology and Science of China

G2S2, Novosibirsk August 18, 2016

イロト 不同下 イヨト イヨト

1/27

Background and basic definitions

- Eigenvalues of graph
- Generalized line graphs
- Two theorems on generalized line graphs

2 Main results, 1

- A first version
- Some applications
- 3 Concept of Hoffman graphs
 - Hoffman Graphs
 - Ostrowski-Hoffman limit theorem
- 4 Structure theorem of Hoffman graphs
 - Direct sum and line Hoffman Graphs
 - A family of Hoffman graphs $\mathfrak{G}(t)$
- 5 Main results, 2
 - Main results, 2
 - 2-clique extension of the square grid

イロト 不得 トイヨト イヨト 二日

 Background and basic definitions
 Main results, 1
 Concept of Hoffman graphs
 Structure theorem of Hoffman graphs
 Main results, 00000
 Main results, 00000

Let G = (V(G), E(G)) be a graph, where V(G) is the vertex set with size n, $E(G) \subseteq {V(G) \choose 2}$ is the edge set.

Background and basic definitions	Main results, 1	Concept of Hoffman graphs	Structure theorem of Hoffman graphs	Main results,
0000				

Let G = (V(G), E(G)) be a graph, where V(G) is the vertex set with size n, $E(G) \subseteq {V(G) \choose 2}$ is the edge set.

Definitions

• Let A(G) be the adjacency matrix of G. The eigenvalues of G are the eigenvalues of A(G).

Background and basic definitions	Main results, 1	Concept of Hoffman graphs	Structure theorem of Hoffman graphs	Main results
0000				

Let G = (V(G), E(G)) be a graph, where V(G) is the vertex set with size n, $E(G) \subseteq \binom{V(G)}{2}$ is the edge set.

Definitions

- Let A(G) be the adjacency matrix of G. The eigenvalues of G are the eigenvalues of A(G).
- Let $\lambda_0, \lambda_1, \ldots, \lambda_t$ be the distinct eigenvalues of G and m_i be the multiplicity of λ_i $(i = 0, 1, \ldots, t)$. Then the multiset

$$\{\lambda_0^{m_0},\lambda_1^{m_1},\ldots,\lambda_t^{m_t}\}$$

is called the spectrum of G.

Background and basic definitions	Main results, 1	Concept of Hoffman graphs	Structure theorem of Hoffman graphs	Main results
0000				

Let G = (V(G), E(G)) be a graph, where V(G) is the vertex set with size n, $E(G) \subseteq {V(G) \choose 2}$ is the edge set.

Definitions

- Let A(G) be the adjacency matrix of G. The eigenvalues of G are the eigenvalues of A(G).
- Let $\lambda_0, \lambda_1, \ldots, \lambda_t$ be the distinct eigenvalues of G and m_i be the multiplicity of λ_i $(i = 0, 1, \ldots, t)$. Then the multiset

$$\{\lambda_0^{m_0},\lambda_1^{m_1},\ldots,\lambda_t^{m_t}\}$$

is called the spectrum of G.

• Two graphs are called cospectral if they have the same spectrum.

Background and basic definitions	Main results, 1	Concept of Hoffman graphs	Structure theorem of Hoffman graphs	Main results,
0000				

A graph G is called generalized line graph if there exists an integral matrix B such that $A(G) + 2I = B^T B$.

Background and basic definitions	Main results, 1	Concept of Hoffman graphs	Structure theorem of Hoffman graphs	Main results,
0000				

A graph G is called generalized line graph if there exists an integral matrix B such that $A(G) + 2I = B^T B$.

• If such B exists, every entry of B is 1, -1, or 0 and every column of B has exactly two nonzero entries.

Background and basic definitions	Main results, 1	Concept of Hoffman graphs	Structure theorem of Hoffman graphs	Main results,
0000				

A graph G is called generalized line graph if there exists an integral matrix B such that $A(G) + 2I = B^T B$.

- If such B exists, every entry of B is 1, -1, or 0 and every column of B has exactly two nonzero entries.
- Note that $A(L(G)) + 2I = B(G)^T B(G)$, where L(G) is the line graph of G and B(G) is the vertex-edge-incidence matrix of G. This shows that every line graph is a generalized line graph.

Background and basic definitions	Main results, 1	Concept of Hoffman graphs	Structure theorem of Hoffman graphs	Main results,
0000				

A graph G is called generalized line graph if there exists an integral matrix B such that $A(G) + 2I = B^T B$.

- If such B exists, every entry of B is 1, -1, or 0 and every column of B has exactly two nonzero entries.
- Note that $A(L(G)) + 2I = B(G)^T B(G)$, where L(G) is the line graph of G and B(G) is the vertex-edge-incidence matrix of G. This shows that every line graph is a generalized line graph.
- Since $B^T B$ is positive semidefinite, every generalized line graph has smallest eigenvalue at least -2.

Background and basic definitions	Main results, 1	Concept of Hoffman graphs	Structure theorem of Hoffman graphs	Main results,
0000				

A graph G is called generalized line graph if there exists an integral matrix B such that $A(G) + 2I = B^T B$.

- If such B exists, every entry of B is 1, -1, or 0 and every column of B has exactly two nonzero entries.
- Note that $A(L(G)) + 2I = B(G)^T B(G)$, where L(G) is the line graph of G and B(G) is the vertex-edge-incidence matrix of G. This shows that every line graph is a generalized line graph.
- Since $B^T B$ is positive semidefinite, every generalized line graph has smallest eigenvalue at least -2.

Now, we will introduce two theorems about generalized line graphs.

A result of Cameron, Goethals, Seidel and Shult

Theorem (Cameron, Goethals, Seidel and Shult, 1976)

Let G be a connected graph with smallest eigenvalue at least -2. Then either G is a generalized line graph, or G has at most 36 vertices.
 Background and basic definitions
 Main results, 1
 Concept of Hoffman graphs
 Structure theorem of Hoffman graphs
 Main results

 0000
 0000
 00000
 00000
 000000
 000000

A result of Cameron, Goethals, Seidel and Shult

Theorem (Cameron, Goethals, Seidel and Shult, 1976)

Let G be a connected graph with smallest eigenvalue at least -2. Then either G is a generalized line graph, or G has at most 36 vertices.

The proof heavily relies on the classification of the irreducible root lattices.

 Background and basic definitions
 Main results, 1
 Concept of Hoffman graphs
 Structure theorem of Hoffman graphs
 Main results, 00000

A result of Hoffman

Now we give a result of Hoffman.

Theorem (Hoffman, 1977)

Let $-1 - \sqrt{2} < \lambda \leq -2$ be a real number. Then there exists an integer $f(\lambda)$ such that if G is a graph with smallest eigenvalue at least λ and minimun valency at least $f(\lambda)$, then G is a generalized line graph.

 Background and basic definitions
 Main results, 1
 Concept of Hoffman graphs
 Structure theorem of Hoffman graphs
 Main results, 00000
 Main results, 00000
 October of Hoffman graphs
 Main results, 00000
 Main results, 00000

A result of Hoffman

Now we give a result of Hoffman.

Theorem (Hoffman, 1977)

Let $-1 - \sqrt{2} < \lambda \leq -2$ be a real number. Then there exists an integer $f(\lambda)$ such that if G is a graph with smallest eigenvalue at least λ and minimun valency at least $f(\lambda)$, then G is a generalized line graph.

• The proof does not rely on the classification of irreducible root lattices. But you have to pay a price for it. Namely you need to assume that the minimum valency is large.

 Background and basic definitions
 Main results, 1
 Concept of Hoffman graphs
 Structure theorem of Hoffman graphs
 Main results, 00000
 Main results, 00000
 October of Hoffman graphs
 Main results, 00000
 Main results, 00000

A result of Hoffman

Now we give a result of Hoffman.

Theorem (Hoffman, 1977)

Let $-1 - \sqrt{2} < \lambda \leq -2$ be a real number. Then there exists an integer $f(\lambda)$ such that if G is a graph with smallest eigenvalue at least λ and minimun valency at least $f(\lambda)$, then G is a generalized line graph.

- The proof does not rely on the classification of irreducible root lattices. But you have to pay a price for it. Namely you need to assume that the minimum valency is large.
- In this talk, we will give some generalizations the theorem of Hoffman.

Local valency

For each vertex x in G, the local graph of G at x is the subgraph of G induced by the neighbors of x and is denoted by $\Delta(x)$.

Local valency

For each vertex x in G, the local graph of G at x is the subgraph of G induced by the neighbors of x and is denoted by $\Delta(x)$. The local valency at x is the quantity $\frac{|2E(\Delta(x))|}{k(x)}$ where k(x) is the valency of x, and is denoted by $\overline{a}(x)$.

Local valency

For each vertex x in G, the local graph of G at x is the subgraph of G induced by the neighbors of x and is denoted by $\Delta(x)$. The local valency at x is the quantity $\frac{|2E(\Delta(x))|}{k(x)}$ where k(x) is the valency of x, and is denoted by $\overline{a}(x)$.

Main theorem

Let $t\geq 2$ be a positive integer. Then there exists a positive integer $\kappa(t)$ such that if a graph G satisfies the following conditions:

$$\ \, \bullet \ \, k(x) > \kappa(t) \ \, \text{for all} \ \, x \in V(G);$$

2
$$\bar{a}(x) \leq \frac{k(x) - \kappa(t)}{t}$$
 for all $x \in V(G)$;

$$\lambda_{\min}(G) \ge -t - 1,$$

Local valency

For each vertex x in G, the local graph of G at x is the subgraph of G induced by the neighbors of x and is denoted by $\Delta(x)$. The local valency at x is the quantity $\frac{|2E(\Delta(x))|}{k(x)}$ where k(x) is the valency of x, and is denoted by $\overline{a}(x)$.

Main theorem

Let $t\geq 2$ be a positive integer. Then there exists a positive integer $\kappa(t)$ such that if a graph G satisfies the following conditions:

$$\ \, \bullet \ \, k(x) > \kappa(t) \ \, \text{for all} \ \, x \in V(G);$$

2
$$\bar{a}(x) \leq \frac{k(x) - \kappa(t)}{t}$$
 for all $x \in V(G)$;

$$\lambda_{\min}(G) \ge -t - 1,$$

then the adjacency matrix \boldsymbol{A} of \boldsymbol{G} satisfies

$$A + (t+1)I = N^T N$$

where N is a (0,1)-matrix.

A geometric interpretation

• Let G be a graph with smallest eigenvalue at least -t - 1. The meaning of this result is that if G satisfies some local condition, then G is the point graph of a partial linear space $(V(G), \mathcal{L})$ where each vertex lies in exactly t + 1 lines.

A geometric interpretation

• Let G be a graph with smallest eigenvalue at least -t - 1. The meaning of this result is that if G satisfies some local condition, then G is the point graph of a partial linear space $(V(G), \mathcal{L})$ where each vertex lies in exactly t + 1 lines.

イロト 不得下 イヨト イヨト 二日

8/27

• Can you check the local condition from the spectrum?

- Let G be a graph with smallest eigenvalue at least -t 1. The meaning of this result is that if G satisfies some local condition, then G is the point graph of a partial linear space $(V(G), \mathcal{L})$ where each vertex lies in exactly t + 1 lines.
- Can you check the local condition from the spectrum?
- Sometimes, namely for example, if you have a regular graph with exactly four distinct eigenvalues.

- Let G be a graph with smallest eigenvalue at least -t 1. The meaning of this result is that if G satisfies some local condition, then G is the point graph of a partial linear space $(V(G), \mathcal{L})$ where each vertex lies in exactly t + 1 lines.
- Can you check the local condition from the spectrum?
- Sometimes, namely for example, if you have a regular graph with exactly four distinct eigenvalues.
- In this case, k(x) and $\bar{a}(x)$ do not depend on the vertex x, as the number of triangles through x does not depend on x.

- Let G be a graph with smallest eigenvalue at least -t 1. The meaning of this result is that if G satisfies some local condition, then G is the point graph of a partial linear space $(V(G), \mathcal{L})$ where each vertex lies in exactly t + 1 lines.
- Can you check the local condition from the spectrum?
- Sometimes, namely for example, if you have a regular graph with exactly four distinct eigenvalues.
- In this case, k(x) and $\bar{a}(x)$ do not depend on the vertex x, as the number of triangles through x does not depend on x.
- And the number of triangles in a graph can be calculated using the spectrum.

- Let G be a graph with smallest eigenvalue at least -t 1. The meaning of this result is that if G satisfies some local condition, then G is the point graph of a partial linear space $(V(G), \mathcal{L})$ where each vertex lies in exactly t + 1 lines.
- Can you check the local condition from the spectrum?
- Sometimes, namely for example, if you have a regular graph with exactly four distinct eigenvalues.
- In this case, k(x) and $\bar{a}(x)$ do not depend on the vertex x, as the number of triangles through x does not depend on x.
- And the number of triangles in a graph can be calculated using the spectrum.
- Now, we will give some examples.

- Let G be a graph with smallest eigenvalue at least -t 1. The meaning of this result is that if G satisfies some local condition, then G is the point graph of a partial linear space $(V(G), \mathcal{L})$ where each vertex lies in exactly t + 1 lines.
- Can you check the local condition from the spectrum?
- Sometimes, namely for example, if you have a regular graph with exactly four distinct eigenvalues.
- In this case, k(x) and $\bar{a}(x)$ do not depend on the vertex x, as the number of triangles through x does not depend on x.
- And the number of triangles in a graph can be calculated using the spectrum.
- Now, we will give some examples.
- Later in the talk, I will give a more general result.

Application 1

There exists a positive integer q' such that any graph, that is cospectral with the Hamming graph H(3,q), and $q \ge q'$, its adjacency matrix A satisfies

$$A + 3I = N^T N,$$

where N is a (0, 1)-matrix.

Application 1

There exists a positive integer q' such that any graph, that is cospectral with the Hamming graph H(3,q), and $q \ge q'$, its adjacency matrix A satisfies

$$A + 3I = N^T N,$$

where N is a (0, 1)-matrix.

Application 2

There exists a positive integer v' such that any graph, that is cospectral with the Johnson graph J(v,3), and $v\geq v'$ its adjacency matrix A satisfies

$$A + 3I = N^T N,$$

where N is a (0, 1)-matrix.

Background and basic definitions	Main results, 1	Concept of Hoffman graphs	Structure theorem of Hoffman graphs	Main results,
	0000			

Remarks

• For Application 1, it can be shown that it is locally the disjoint union of $3K_{q-1}$'s. This was already shown by Bang et al.

Background and basic definitions	Main results, 1	Concept of Hoffman graphs	Structure theorem of Hoffman graphs	Main results,
	0000			

Remarks

• For Application 1, it can be shown that it is locally the disjoint union of $3K_{q-1}$'s. This was already shown by Bang et al.

イロト イポト イヨト イヨト

• Moreover, they showed that for $q \ge 36$ the Hamming graph H(3,q) is determined by its spectrum.

Background and basic definitions	Main results, 1	Concept of Hoffman graphs	Structure theorem of Hoffman graphs	Main results
	0000			

Remarks

- For Application 1, it can be shown that it is locally the disjoint union of $3K_{q-1}$'s. This was already shown by Bang et al.
- Moreover, they showed that for $q \ge 36$ the Hamming graph H(3,q) is determined by its spectrum.
- Van Dam et al. gave two constructions to construct cospectral graphs with J(v,3). Application 2 tells us that they must come from partial linear spaces.

Background and basic definitions	Main results, 1	Concept of Hoffman graphs	Structure theorem of Hoffman graphs	Main results,
		00000		

Hoffman graphs

We will introduce Hoffman graphs. They are very important for our proof.

Hoffman graphs, 2

Definitions

- A Hoffman graph \mathfrak{h} is a pair (H, μ) of a graph H = (V, E)and a labeling map $\mu : V \to \{f, s\}$, satisfying the following conditions:
 - $(i)\;$ every vertex with label f is adjacent to at least one vertex with label $s;\;$
 - (ii) vertices with label f are pairwise non-adjacent.

Hoffman graphs, 2

Definitions

- A Hoffman graph \mathfrak{h} is a pair (H, μ) of a graph H = (V, E)and a labeling map $\mu : V \to \{f, s\}$, satisfying the following conditions:
 - $(i)\;$ every vertex with label f is adjacent to at least one vertex with label $s;\;$

(ii) vertices with label f are pairwise non-adjacent.

Hoffman graphs, 2

Definitions

- A Hoffman graph \mathfrak{h} is a pair (H, μ) of a graph H = (V, E)and a labeling map $\mu : V \to \{f, s\}$, satisfying the following conditions:
 - $(i)\;$ every vertex with label f is adjacent to at least one vertex with label $s;\;$

(ii) vertices with label f are pairwise non-adjacent.

If every slim vertex has a fat neighbor, we call h fat;
 If every slim vertex has at least t fat neighbors, we call h t-fat.

Hoffman graphs, 2

Definitions

- A Hoffman graph \mathfrak{h} is a pair (H, μ) of a graph H = (V, E)and a labeling map $\mu: V \to \{f, s\}$, satisfying the following conditions:
 - $(i)\;$ every vertex with label f is adjacent to at least one vertex with label $s;\;$

(ii) vertices with label f are pairwise non-adjacent.

- A vertex with label s called a slim vertex;
 A vertex with label f called a fat vertex;
 V_s = V_s(h) the set of slim vertices of h;
 V_f = V_f(h) the set of fat vertices of h.
- If every slim vertex has a fat neighbor, we call h fat;
 If every slim vertex has at least t fat neighbors, we call h t-fat.
- The slim graph of a Hoffman graph \mathfrak{h} is the subgraph of H induced on $V_s(\mathfrak{h})$.

Background and basic definitions	Main results, 1	Concept of Hoffman graphs	Structure theorem of Hoffman graphs	Main results,
0000	0000	00000	00000	000000

Definitions

• For a Hoffman graph \mathfrak{h} , let A be the adjacency matrix of H

$$A = \left(\begin{array}{cc} A_s & C\\ C^T & O \end{array}\right)$$

in a labeling in which the fat vertices come last.

Background and basic definition	s Main results, 1	Concept of Hoffman graphs	Structure theorem of Hoffman graphs	Main results,
		00000		

Definitions

• For a Hoffman graph \mathfrak{h} , let A be the adjacency matrix of H

$$A = \left(\begin{array}{cc} A_s & C\\ C^T & O \end{array}\right)$$

in a labeling in which the fat vertices come last. The special matrix $S(\mathfrak{h})$ of \mathfrak{h} is the matrix $S(\mathfrak{h}) := A_s - CC^T$.

Background and basic definition	s Main results, 1	Concept of Hoffman graphs	Structure theorem of Hoffman graphs	Main results,
		00000		

Definitions

• For a Hoffman graph \mathfrak{h} , let A be the adjacency matrix of H

$$A = \left(\begin{array}{cc} A_s & C\\ C^T & O \end{array}\right)$$

in a labeling in which the fat vertices come last. The special matrix $S(\mathfrak{h})$ of \mathfrak{h} is the matrix $S(\mathfrak{h}) := A_s - CC^T$.

• The eigenvalues of \mathfrak{h} are the eigenvalues of $\mathcal{S}(\mathfrak{h})$.

Background and basic definitions	Main results, 1	Concept of Hoffman graphs	Structure theorem of Hoffman graphs	Main results,
		0000		

Definitions

• For a Hoffman graph \mathfrak{h} , let A be the adjacency matrix of H

$$A = \left(\begin{array}{cc} A_s & C\\ C^T & O \end{array}\right)$$

in a labeling in which the fat vertices come last. The special matrix $S(\mathfrak{h})$ of \mathfrak{h} is the matrix $S(\mathfrak{h}) := A_s - CC^T$.

• The eigenvalues of \mathfrak{h} are the eigenvalues of $\mathcal{S}(\mathfrak{h})$.

Note that each row and column of a special matrix is indexed by slim vertices. For $x, y \in V_s(\mathfrak{h})$, $(CC^T)_{xy}$ is the number of common fat neighbors of x and y.

Background and basic definition	Main results, 1	Concept of Hoffman graphs	Structure theorem of Hoffman graphs	Main results,
		00000		

Smallest eigenvalue

Denote by $\lambda_{\min}(\mathfrak{h})$ (resp. $\lambda_{\min}(G)$) the smallest eigenvalue of a given Hoffman graph \mathfrak{h} (resp. a given graph G), then we have the following lemma.

Smallest eigenvalue

Denote by $\lambda_{\min}(\mathfrak{h})$ (resp. $\lambda_{\min}(G)$) the smallest eigenvalue of a given Hoffman graph \mathfrak{h} (resp. a given graph G), then we have the following lemma.

Lemma

• If \mathfrak{h}' is an induced Hoffman subgraph of a Hoffman graph \mathfrak{h} , then $\lambda_{\min}(\mathfrak{h}') \geq \lambda_{\min}(\mathfrak{h})$ holds.

Ostrowski-Hoffman limit theorem

One reason why to define the smallest of a Hoffman as we did is the following:

Ostrowski-Hoffman limit theorem

One reason why to define the smallest of a Hoffman as we did is the following:

Ostrowski-Hoffman Theorem

Let \mathfrak{h} be a Hoffman graph. Let $G(\mathfrak{h}, n)$ be the ordinary graph obtained from \mathfrak{h} by replacing each fat vertex f by a slim n-clique $K_n(f)$, and joining all the neighbors of f with all the vertices of $K_n(f)$. Then

$$\lambda_{\min}(G(\mathfrak{h}, n)) \ge \lambda_{\min}(\mathfrak{h}).$$

and

$$\lim_{n \to \infty} \lambda_{\min}(G(\mathfrak{h}, n)) = \lambda_{\min}(\mathfrak{h}).$$

Structure theorem of Hoffman graphs

In this section we will give some structure theorem of Haffman graphs.

Background and basic definitions	Main results, 1	Concept of Hoffman graphs	Structure theorem of Hoffman graphs	Main results,
			00000	

Direct Sum

Now we define the direct sum of Hoffman graphs.

Background and basic definitions	Main results, 1	Concept of Hoffman graphs	Structure theorem of Hoffman graphs	Main results,
			● 0 000	

Direct Sum

Now we define the direct sum of Hoffman graphs.

Definition

Let \mathfrak{h} be a Hoffman graph and \mathfrak{h}^1 and \mathfrak{h}^2 be two induced Hoffman subgraphs of \mathfrak{h} . The Hoffman graph \mathfrak{h} is called the direct sum of \mathfrak{h}^1 and \mathfrak{h}^2 , denoted by $\mathfrak{h} = \mathfrak{h}^1 \bigoplus \mathfrak{h}^2$, if and only if $\mathfrak{h}^1, \mathfrak{h}^2$ and \mathfrak{h} satisfy the following conditions:

(i)
$$V(\mathfrak{h}) = V(\mathfrak{h}^1) \bigcup V(\mathfrak{h}^2);$$

(*ii*) $\{V_s(\mathfrak{h}^1), V_s(\mathfrak{h}^2)\}$ is a partition of $V_s(\mathfrak{h})$;

(iii) if $x\in V_s(\mathfrak{h}^i)$, $f\in V_f(\mathfrak{h})$ and $x\sim f$, then $f\in V_f(\mathfrak{h}^i)$;

(iv) if $x \in V_s(\mathfrak{h}^1)$ and $y \in V_s(\mathfrak{h}^2)$, then x and y have at most one common fat neighbor, and they have exactly one common fat neighbor if and only if they are adjacent.

Background and basic definitions	Main results, 1	Concept of Hoffman graphs	Structure theorem of Hoffman graphs	Main results
			0000	

The main reason for this definition is that the special matrix of $\mathfrak{h}, S(\mathfrak{h})$, is a block matrix with blocks $S(\mathfrak{h}^1)$ and $S(\mathfrak{h}^2)$. That is,

$$S(\mathfrak{h}) = \begin{pmatrix} S(\mathfrak{h}^1) & 0\\ 0 & S(\mathfrak{h}^2) \end{pmatrix}$$

Blackboard Example

Background and basic definitions	Main results, 1	Concept of Hoffman graphs	Structure theorem of Hoffman graphs	Main results,
			00000	

If $\mathfrak{h} = \mathfrak{h}_1 \bigoplus \mathfrak{h}_2$ for some induced Hoffman subgraphs \mathfrak{h}_1 and \mathfrak{h}_2 , then we call \mathfrak{h} decomposable. Otherwise \mathfrak{h} is called indecomposable.

Background and basic definitions	Main results, 1	Concept of Hoffman graphs	Structure theorem of Hoffman graphs	Main results
			00000	

If $\mathfrak{h} = \mathfrak{h}_1 \bigoplus \mathfrak{h}_2$ for some induced Hoffman subgraphs \mathfrak{h}_1 and \mathfrak{h}_2 , then we call \mathfrak{h} decomposable. Otherwise \mathfrak{h} is called indecomposable.

Definition

Let \mathfrak{G} be a family of Hoffman graphs. A Hoffman graph \mathfrak{g} is called a \mathfrak{G} -line Hoffman graph if it is an induced Hoffman subgraph of $\mathfrak{h} = \bigoplus_{i=1}^t \mathfrak{h}_i$ where \mathfrak{h}_i is isomorphic to an induced Hoffman subgraph of some Hoffman graph in \mathfrak{G} for $i = 1, \ldots, t$ such that \mathfrak{g} and \mathfrak{h} have the same slim graph. Background and basic definitions Main results, 1 Concept of Hoffman graphs Structure theorem of Hoffman graphs 0000 Nain results, 00000 Nain results, 0000 Nain results,

A family of Hoffman graphs

Now we use the above definitons to define a family of Hoffman graphs.

Definition

Let t be a positive integer. We define $\mathfrak{G}(t)$ to be the family of pairwise non-isomorphic indecomposable t-fat Hoffman graphs with special matrix either (-t-1) or $\begin{pmatrix} J_{s_1} - (t+1)I_{s_1} & -J \\ -J & J_{s_2} - (t+1)I_{s_2} \end{pmatrix}$ where $1 \leq s_1, s_2 \leq t$.

Background and basic definitions Main results, 1 Concept of Hoffman graphs 0000 Structure theorem of Hoffman graphs 0000 Main results, 00000 Main results, 00000

A family of Hoffman graphs

Now we use the above definitons to define a family of Hoffman graphs.

Definition

Let t be a positive integer. We define $\mathfrak{G}(t)$ to be the family of pairwise non-isomorphic indecomposable t-fat Hoffman graphs with special matrix either (-t-1) or $\begin{pmatrix} J_{s_1} - (t+1)I_{s_1} & -J \\ -J & J_{s_2} - (t+1)I_{s_2} \end{pmatrix}$ where $1 \leq s_1, s_2 \leq t$.

Note that every Hoffman graph in $\mathfrak{G}(t)$ has smallest eigenvalue -t - 1.

An important result

Let $\mathfrak{h}^{(t)}$ be the Hoffman graph with unique slim vertex adjacent to t fat vertices.

Theorem

Let t be a positive integer. Every t-fat Hoffman graph with smallest eigenvalue at least -t - 1 is a $\mathfrak{G}(t)$ -line Hoffman graph.

Some more definitions

To describe our main results using Hoffman graphs, we need two more definitions.

Definitions

• A *p*-plex is a maximal subgraph in which each vertex is adjacent to all but at most *p* of its members.

Some more definitions

To describe our main results using Hoffman graphs, we need two more definitions.

Definitions

- A *p*-plex is a maximal subgraph in which each vertex is adjacent to all but at most *p* of its members.
- For each vertex x in G, the local graph of G at x is the subgraph of G induced by the neighbors of x and is denoted by Δ(x).
- The local valency at x is the quantity $\frac{|2E(\Delta(x))|}{k(x)}$ where k(x) is the valency of x, and is denoted by $\overline{a}(x)$.

Background and basic definitions	Main results, 1	Concept of Hoffman graphs	Structure theorem of Hoffman graphs	Main results,
				00000

Main theorem (Local valency version)

Let $t \ge 2$ be a positive integer and $s \in \{t - 1, t\}$. Then there exists a positive integer $\kappa(t)$ such that if a graph G satisfies the following conditions:

2
$$\bar{a}(x) \leq \frac{k(x) - \kappa(t)}{s}$$
 for all $x \in V(G)$;

$$\lambda_{\min}(G) \ge -t - 1,$$

then the following holds:

Background and basic definitions	Main results, 1	Concept of Hoffman graphs	Structure theorem of Hoffman graphs	Main results,
				00000

Main theorem (Local valency version)

Let $t \ge 2$ be a positive integer and $s \in \{t - 1, t\}$. Then there exists a positive integer $\kappa(t)$ such that if a graph G satisfies the following conditions:

•
$$k(x) > \kappa(t)$$
 for all $x \in V(G)$;

2
$$\bar{a}(x) \leq \frac{k(x) - \kappa(t)}{s}$$
 for all $x \in V(G)$;

$$\lambda_{\min}(G) \ge -t - 1,$$

then the following holds:

(a) If s = t - 1, then G is the slim graph of a t-fat $\mathfrak{G}(t)$ -line Hoffman graph;

(b) If s = t, then G is the slim graph of a (t + 1)-fat $\{\mathfrak{h}^{(t+1)}\}$ -line Hoffman graph.

Background and basic definitions	Main results, 1	Concept of Hoffman graphs	Structure theorem of Hoffman graphs	Main results,
				00000

Main theorem (Local valency version)

Let $t \ge 2$ be a positive integer and $s \in \{t - 1, t\}$. Then there exists a positive integer $\kappa(t)$ such that if a graph G satisfies the following conditions:

•
$$k(x) > \kappa(t)$$
 for all $x \in V(G)$;

2
$$\bar{a}(x) \leq \frac{k(x) - \kappa(t)}{s}$$
 for all $x \in V(G)$;

$$\lambda_{\min}(G) \ge -t - 1,$$

then the following holds:

(a) If s = t - 1, then G is the slim graph of a t-fat $\mathfrak{G}(t)$ -line Hoffman graph;

(b) If s = t, then G is the slim graph of a (t + 1)-fat $\{\mathfrak{h}^{(t+1)}\}$ -line Hoffman graph.

We already have seen (b) before. (In quite different form.)

Background and basic definitions	Main results, 1	Concept of Hoffman graphs	Structure theorem of Hoffman graphs	Main results,
				000000

Main theorem (Plex version)

Let $t \ge 2$ be a positive integer and $s \in \{t - 1, t\}$. Then there exists a positive integer K(t) such that if a graph G satisfies the following conditions:

•
$$k(x) > K(t)$$
 for all $x \in V(G)$;

② for all $x \in V(G)$, a $(t^2 + 1)$ -plex containing x has order at most $\frac{k(x) - K(t)}{s}$;

$$\lambda_{\min}(G) \ge -t - 1,$$

then the following holds:

- (a) If s = t 1, then G is the slim graph of a t-fat $\mathfrak{G}(t)$ -line Hoffman graph;
- (b) If s = t, then G is the slim graph of a (t + 1)-fat $\{\mathfrak{h}^{(t+1)}\}$ -line Hoffman graph.

Key idea of the proof. Let G be a graph satisfies three conditions in main theorem. Then we will construct a Hoffman graph $\mathfrak{h}(G, m, n)$ (Associated Hoffman graph of G) obtained from G by putting some fat vertices which correspond to very dense subgraphs of G(quasi-clique).

Key idea of the proof. Let G be a graph satisfies three conditions in main theorem. Then we will construct a Hoffman graph $\mathfrak{h}(G, m, n)$ (Associated Hoffman graph of G) obtained from G by putting some fat vertices which correspond to very dense subgraphs of G(quasi-clique). Existence of these dense subgraphs is guaranteed by the Ramsey's theorem and the first condition.

Key idea of the proof. Let G be a graph satisfies three conditions in main theorem. Then we will construct a Hoffman graph $\mathfrak{h}(G, m, n)$ (Associated Hoffman graph of G) obtained from G by putting some fat vertices which correspond to very dense subgraphs of G(quasi-clique). Existence of these dense subgraphs is guaranteed by the Ramsey's theorem and the first condition. The second conditions are there to make $\mathfrak{h}(G, m, n)$ *t*-fat. The third condition is there to enforce $\mathfrak{h}(G, m, n)$ to have smallest eigenvalue at least -t - 1. Then we show that the Hoffman graph $\mathfrak{h}(G,m,n)$ is a t-fat $\mathfrak{G}(t)$ -line Hoffman graph. Since the slim graph of $\mathfrak{h}(G, m, n)$ is exactly G, the result follows.

Key idea of the proof. Let G be a graph satisfies three conditions in main theorem. Then we will construct a Hoffman graph $\mathfrak{h}(G, m, n)$ (Associated Hoffman graph of G) obtained from G by putting some fat vertices which correspond to very dense subgraphs of G(quasi-clique). Existence of these dense subgraphs is guaranteed by the Ramsey's theorem and the first condition. The second conditions are there to make $\mathfrak{h}(G, m, n)$ *t*-fat. The third condition is there to enforce $\mathfrak{h}(G, m, n)$ to have smallest eigenvalue at least -t - 1. Then we show that the Hoffman graph $\mathfrak{h}(G, m, n)$ is a *t*-fat $\mathfrak{G}(t)$ -line Hoffman graph. Since the slim graph of $\mathfrak{h}(G, m, n)$ is exactly G, the result follows.

Remark. We assume $t \ge 2$, because of the second condition. For t = 1, we do not need the second condition. In this case, we obtain Hoffman original theorem.

Using the plex version of our main theorem and a bound a la Hoffman on the order of t-plexes, we can show:

2-clique extension of a grid

There exists a positive integer t' such that any graph, that is cospectral with the 2-clique extension of $(t_1 \times t_2)$ -grid is the slim graph of a 2-fat $\{ \bullet \bullet, \bullet, \bullet \}$ -line Hoffman graph for all $t_1 \ge t_2 \ge t'$.

Using the plex version of our main theorem and a bound a la Hoffman on the order of t-plexes, we can show:

2-clique extension of a grid

There exists a positive integer t' such that any graph, that is cospectral with the 2-clique extension of $(t_1 \times t_2)$ -grid is the slim graph of a 2-fat $\{ \bigstar, \clubsuit, \diamondsuit \}$ -line Hoffman graph for all $t_1 \ge t_2 \ge t'$.

Remark

• For the square grid, we could also use the local valency version of our main theorem, but not for the non-square grids, as they have five distinct eigenvalues.

Using the plex version of our main theorem and a bound a la Hoffman on the order of t-plexes, we can show:

2-clique extension of a grid

There exists a positive integer t' such that any graph, that is cospectral with the 2-clique extension of $(t_1 \times t_2)$ -grid is the slim graph of a 2-fat $\{ \bigstar, \bigstar, \diamondsuit, \diamondsuit \}$ -line Hoffman graph for all $t_1 \ge t_2 \ge t'$.

Remark

- For the square grid, we could also use the local valency version of our main theorem, but not for the non-square grids, as they have five distinct eigenvalues.
- Using this result Yang, Abiad and myself showed that the 2-clique extension of the $t \times t$ -grid is determined by its spectrum if t is very large.

Using the plex version of our main theorem and a bound a la Hoffman on the order of t-plexes, we can show:

2-clique extension of a grid

There exists a positive integer t' such that any graph, that is cospectral with the 2-clique extension of $(t_1 \times t_2)$ -grid is the slim graph of a 2-fat $\{ \bigstar, \bigstar, \diamondsuit, \diamondsuit \}$ -line Hoffman graph for all $t_1 \ge t_2 \ge t'$.

Remark

- For the square grid, we could also use the local valency version of our main theorem, but not for the non-square grids, as they have five distinct eigenvalues.
- Using this result Yang, Abiad and myself showed that the 2-clique extension of the $t \times t$ -grid is determined by its spectrum if t is very large.
- This result will be used in the next talk by Sasha Gavrilyuk to show that certain Grassmann graphs are unique as distance-regular graphs.

6/27

Background and basic definitions	Main results, 1	Concept of Hoffman graphs	Structure theorem of Hoffman graphs	Main results,
				000000

Thank you for your attention!