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Let G = (V (G), E(G)) be a graph, where V (G) is the vertex set
with size n, E(G) ⊆

(
V (G)

2

)
is the edge set.

Definitions

Let A(G) be the adjacency matrix of G. The eigenvalues of G
are the eigenvalues of A(G).

Let λ0, λ1, . . . , λt be the distinct eigenvalues of G and mi be
the multiplicity of λi (i = 0, 1, . . . , t). Then the multiset

{λm0
0 , λm1

1 , . . . , λmt
t }

is called the spectrum of G.

Two graphs are called cospectral if they have the same
spectrum.
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Definition

A graph G is called generalized line graph if there exists an integral
matrix B such that A(G) + 2I = BTB.

If such B exists, every entry of B is 1,−1, or 0 and every
column of B has exactly two nonzero entries.

Note that A(L(G)) + 2I = B(G)TB(G), where L(G) is the
line graph of G and B(G) is the vertex-edge-incidence matrix
of G. This shows that every line graph is a generalized line
graph.

Since BTB is positive semidefinite, every generalized line
graph has smallest eigenvalue at least −2.

Now, we will introduce two theorems about generalized line graphs.
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A result of Cameron, Goethals, Seidel and Shult

Theorem (Cameron, Goethals, Seidel and Shult, 1976)

Let G be a connected graph with smallest eigenvalue at least −2.
Then either G is a generalized line graph, or G has at most 36
vertices.

The proof heavily relies on the classification of the irreducible root
lattices.
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A result of Hoffman

Now we give a result of Hoffman.

Theorem (Hoffman, 1977)

Let −1−
√

2 < λ ≤ −2 be a real number. Then there exists an
integer f(λ) such that if G is a graph with smallest eigenvalue at
least λ and minimun valency at least f(λ), then G is a generalized
line graph.

The proof does not rely on the classification of irreducible
root lattices. But you have to pay a price for it. Namely you
need to assume that the minimum valency is large.

In this talk, we will give some generalizations the theorem of
Hoffman.
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Local valency

For each vertex x in G, the local graph of G at x is the subgraph
of G induced by the neighbors of x and is denoted by ∆(x).

The local valency at x is the quantity |2E(∆(x))|
k(x) where k(x) is the

valency of x, and is denoted by ā(x).

Main theorem

Let t ≥ 2 be a positive integer. Then there exists a positive integer
κ(t) such that if a graph G satisfies the following conditions:

1 k(x) > κ(t) for all x ∈ V (G);

2 ā(x) ≤ k(x)−κ(t)
t for all x ∈ V (G);

3 λmin(G) ≥ −t− 1,

then the adjacency matrix A of G satisfies

A+ (t+ 1)I = NTN

where N is a (0, 1)-matrix.
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A geometric interpretation

Let G be a graph with smallest eigenvalue at least −t− 1.
The meaning of this result is that if G satisfies some local
condition, then G is the point graph of a partial linear space
(V (G),L) where each vertex lies in exactly t+ 1 lines.

Can you check the local condition from the spectrum?

Sometimes, namely for example, if you have a regular graph
with exactly four distinct eigenvalues.

In this case, k(x) and ā(x) do not depend on the vertex x, as
the number of triangles through x does not depend on x.

And the number of triangles in a graph can be calculated
using the spectrum.

Now, we will give some examples.

Later in the talk, I will give a more general result.
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Application 1

There exists a positive integer q′ such that any graph, that is
cospectral with the Hamming graph H(3, q), and q ≥ q′, its
adjacency matrix A satisfies

A+ 3I = NTN,

where N is a (0, 1)-matrix.

Application 2

There exists a positive integer v′ such that any graph, that is
cospectral with the Johnson graph J(v, 3), and v ≥ v′ its
adjacency matrix A satisfies

A+ 3I = NTN,

where N is a (0, 1)-matrix.
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Remarks

For Application 1, it can be shown that it is locally the disjoint
union of 3Kq−1’s. This was already shown by Bang et al.

Moreover, they showed that for q ≥ 36 the Hamming graph
H(3, q) is determined by its spectrum.

Van Dam et al. gave two constructions to construct
cospectral graphs with J(v, 3). Application 2 tells us that
they must come from partial linear spaces.
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Hoffman graphs

We will introduce Hoffman graphs. They are very important for
our proof.
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Hoffman graphs, 2

Definitions

A Hoffman graph h is a pair (H,µ) of a graph H = (V,E)
and a labeling map µ : V → {f, s}, satisfying the following
conditions:

(i) every vertex with label f is adjacent to at least one vertex with
label s;

(ii) vertices with label f are pairwise non-adjacent.

A vertex with label s called a slim vertex;
A vertex with label f called a fat vertex;
Vs = Vs(h) the set of slim vertices of h;
Vf = Vf (h) the set of fat vertices of h.

If every slim vertex has a fat neighbor, we call h fat;
If every slim vertex has at least t fat neighbors, we call h t-fat.

The slim graph of a Hoffman graph h is the subgraph of H
induced on Vs(h).

12 / 27
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Special matrix

Definitions

For a Hoffman graph h, let A be the adjacency matrix of H

A =

(
As C
CT O

)
in a labeling in which the fat vertices come last.

The special
matrix S(h) of h is the matrix S(h) := As − CCT .

The eigenvalues of h are the eigenvalues of S(h).

Note that each row and column of a special matrix is indexed by
slim vertices. For x, y ∈ Vs(h), (CCT )xy is the number of common
fat neighbors of x and y.
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Smallest eigenvalue

Denote by λmin(h) (resp. λmin(G)) the smallest eigenvalue of a
given Hoffman graph h (resp. a given graph G), then we have the
following lemma.

Lemma

If h′ is an induced Hoffman subgraph of a Hoffman graph h,
then λmin(h′) ≥ λmin(h) holds.
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Ostrowski-Hoffman limit theorem

One reason why to define the smallest of a Hoffman as we did is
the following:

Ostrowski-Hoffman Theorem

Let h be a Hoffman graph. Let G(h, n) be the ordinary graph
obtained from h by replacing each fat vertex f by a slim n-clique
Kn(f), and joining all the neighbors of f with all the vertices of
Kn(f). Then

λmin(G(h, n)) ≥ λmin(h).

and
lim
n→∞

λmin(G(h, n)) = λmin(h).
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Structure theorem of Hoffman graphs

In this section we will give some structure theorem of Haffman
graphs.
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Direct Sum

Now we define the direct sum of Hoffman graphs.

Definition

Let h be a Hoffman graph and h1 and h2 be two induced Hoffman
subgraphs of h. The Hoffman graph h is called the direct sum of
h1 and h2, denoted by h = h1

⊕
h2, if and only if h1, h2 and h

satisfy the following conditions:

(i) V (h) = V (h1)
⋃
V (h2);

(ii) {Vs(h1), Vs(h
2)} is a partition of Vs(h);

(iii) if x ∈ Vs(hi), f ∈ Vf (h) and x ∼ f , then f ∈ Vf (hi);

(iv) if x ∈ Vs(h1) and y ∈ Vs(h2), then x and y have at most one
common fat neighbor, and they have exactly one common fat
neighbor if and only if they are adjacent.
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The main reason for this definition is that the special matrix of
h,S(h), is a block matrix with blocks S(h1) and S(h2). That is,

S(h) =

(
S(h1) 0

0 S(h2)

)
Blackboard Example
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Definition

If h = h1
⊕

h2 for some induced Hoffman subgraphs h1 and h2,
then we call h decomposable. Otherwise h is called
indecomposable.

Definition

Let G be a family of Hoffman graphs. A Hoffman graph g is called
a G-line Hoffman graph if it is an induced Hoffman subgraph of
h =

⊕t
i=1 hi where hi is isomorphic to an induced Hoffman

subgraph of some Hoffman graph in G for i = 1, . . . , t such that g
and h have the same slim graph.
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A family of Hoffman graphs

Now we use the above defintions to define a family of Hoffman
graphs.

Definition

Let t be a positive integer. We define G(t) to be the family of
pairwise non-isomorphic indecomposable t-fat Hoffman graphs with
special matrix either (−t− 1) or(
Js1 − (t+ 1)Is1 −J

−J Js2 − (t+ 1)Is2

)
where 1 ≤ s1, s2 ≤ t.

Note that every Hoffman graph in G(t) has smallest eigenvalue
−t− 1.
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An important result

Let h(t) be the Hoffman graph with unique slim vertex adjacent to
t fat vertices.

Theorem

Let t be a positive integer. Every t-fat Hoffman graph with
smallest eigenvalue at least −t− 1 is a G(t)-line Hoffman graph.
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Some more definitions

To describe our main results using Hoffman graphs, we need two
more definitions.

Definitions

A p-plex is a maximal subgraph in which each vertex is
adjacent to all but at most p of its members.

For each vertex x in G, the local graph of G at x is the
subgraph of G induced by the neighbors of x and is denoted
by ∆(x).

The local valency at x is the quantity |2E(∆(x))|
k(x) where k(x) is

the valency of x, and is denoted by ā(x).
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Main result 1

Main theorem (Local valency version)

Let t ≥ 2 be a positive integer and s ∈ {t− 1, t}. Then there
exists a positive integer κ(t) such that if a graph G satisfies the
following conditions:

1 k(x) > κ(t) for all x ∈ V (G);

2 ā(x) ≤ k(x)−κ(t)
s for all x ∈ V (G);

3 λmin(G) ≥ −t− 1,

then the following holds:

(a) If s = t− 1, then G is the slim graph of a t-fat G(t)-line
Hoffman graph;

(b) If s = t, then G is the slim graph of a (t+ 1)-fat {h(t+1)}-line
Hoffman graph.

We already have seen (b) before. (In quite different form.)
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Main result 2

Main theorem (Plex version)

Let t ≥ 2 be a positive integer and s ∈ {t− 1, t}. Then there
exists a positive integer K(t) such that if a graph G satisfies the
following conditions:

1 k(x) > K(t) for all x ∈ V (G);

2 for all x ∈ V (G), a (t2 + 1)-plex containing x has order at

most k(x)−K(t)
s ;

3 λmin(G) ≥ −t− 1,

then the following holds:

(a) If s = t− 1, then G is the slim graph of a t-fat G(t)-line
Hoffman graph;

(b) If s = t, then G is the slim graph of a (t+ 1)-fat {h(t+1)}-line
Hoffman graph.
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Key idea of the proof. Let G be a graph satisfies three conditions
in main theorem. Then we will construct a Hoffman graph
h(G,m, n)(Associated Hoffman graph of G) obtained from G by
putting some fat vertices which correspond to very dense
subgraphs of G(quasi-clique).

Existence of these dense subgraphs
is guaranteed by the Ramsey’s theorem and the first condition.
The second conditions are there to make h(G,m, n) t-fat. The
third condition is there to enforce h(G,m, n) to have smallest
eigenvalue at least −t− 1. Then we show that the Hoffman graph
h(G,m, n) is a t-fat G(t)-line Hoffman graph. Since the slim
graph of h(G,m, n) is exactly G, the result follows.

Remark. We assume t ≥ 2, because of the second condition. For
t = 1, we do not need the second condition. In this case, we
obtain Hoffman original theorem.
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Using the plex version of our main theorem and a bound a la
Hoffman on the order of t-plexes, we can show:

2-clique extension of a grid

There exists a positive integer t′ such that any graph, that is
cospectral with the 2-clique extension of (t1 × t2)-grid is the slim

graph of a 2-fat {

1

,

1

,

1

}-line Hoffman graph for all t1 ≥ t2 ≥ t′.

Remark

For the square grid, we could also use the local valency
version of our main theorem, but not for the non-square grids,
as they have five distinct eigenvalues.

Using this result Yang, Abiad and myself showed that the
2-clique extension of the t× t-grid is determined by its
spectrum if t is very large.

This result will be used in the next talk by Sasha Gavrilyuk to
show that certain Grassmann graphs are unique as
distance-regular graphs.
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Thank you for your attention!
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