On characterizations of association schemes by intersection numbers

Ilia Ponomarenko

St.Petersburg Department of V.A.Steklov Institute of Mathematics of the Russian Academy of Sciences

> The International Conference and PhD-Master Summer School on "Graphs and Groups, Spectra and Symmetries" (G2S2) Novosibirsk, Russia, August 15-28, 2016.

> > ◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Coherent configurations

Let Ω be a finite set and *S* a partition of $\Omega \times \Omega$.

Coherent configurations

Let Ω be a finite set and *S* a partition of $\Omega \times \Omega$.

Definition

The pair $\mathcal{X} = (\Omega, S)$ is a coherent configuration if

- $\mathbf{1}_{\Omega} = \{(\alpha, \alpha) : \alpha \in \Omega\}$ is a union of relations from S,
- *S* contains $s^* = \{(\alpha, \beta) : (\beta, \alpha) \in s\}$ for all $s \in S$,
- for all $r, s, t \in S$, the intersection number

$$oldsymbol{c}_{m{rs}}^t = |\{\gamma \in \Omega: \ (lpha, \gamma) \in m{r}, \ (\gamma, eta) \in m{s}\}|$$

does not depend on the choice of $(\alpha, \beta) \in t$.

Coherent configurations

Let Ω be a finite set and *S* a partition of $\Omega \times \Omega$.

Definition

The pair $\mathcal{X} = (\Omega, S)$ is a coherent configuration if

- $\mathbf{1}_{\Omega} = \{(\alpha, \alpha) : \alpha \in \Omega\}$ is a union of relations from S,
- S contains $s^* = \{(\alpha, \beta) : (\beta, \alpha) \in s\}$ for all $s \in S$,
- for all $r, s, t \in S$, the intersection number

$$m{c}_{rm{s}}^t = |\{\gamma \in \Omega : (\alpha, \gamma) \in r, (\gamma, \beta) \in m{s}\}|$$

does not depend on the choice of $(\alpha, \beta) \in t$.

Problem

Which coherent configurations are separable, i.e., uniquely determined by the intersection numbers?

Remarks

• there are d^3 numbers c_{rs}^t , where d = |S| is the rank of \mathcal{X} ,

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Remarks

• there are d^3 numbers c_{rs}^t , where d = |S| is the rank of \mathcal{X} ,

(日) (日) (日) (日) (日) (日) (日)

• $O(d^2)$ intersection numbers determine the whole array,

Remarks

- there are d^3 numbers c_{rs}^t , where d = |S| is the rank of \mathcal{X} ,
- $O(d^2)$ intersection numbers determine the whole array,
- for coherent configurations of distance regular graphs, 2*d* numbers determine the array.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Remarks

- there are d^3 numbers c_{rs}^t , where d = |S| is the rank of \mathcal{X} ,
- $O(d^2)$ intersection numbers determine the whole array,
- for coherent configurations of distance regular graphs, 2*d* numbers determine the array.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Proposition

The intersection number array determines

• the degree $n = |\Omega|$ and rank d of \mathcal{X} ,

Remarks

- there are d^3 numbers c_{rs}^t , where d = |S| is the rank of \mathcal{X} ,
- $O(d^2)$ intersection numbers determine the whole array,
- for coherent configurations of distance regular graphs, 2*d* numbers determine the array.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Proposition

The intersection number array determines

- the degree $n = |\Omega|$ and rank *d* of \mathcal{X} ,
- the valencies n_r of basis graphs $r \in S$,

Remarks

- there are d^3 numbers c_{rs}^t , where d = |S| is the rank of \mathcal{X} ,
- $O(d^2)$ intersection numbers determine the whole array,
- for coherent configurations of distance regular graphs, 2*d* numbers determine the array.

(日) (日) (日) (日) (日) (日) (日)

Proposition

The intersection number array determines

- the degree $n = |\Omega|$ and rank *d* of \mathcal{X} ,
- the valencies n_r of basis graphs $r \in S$,
- the homogeneity, commutativity, primitivity, etc.

Let $\mathcal{X} = (\Omega, S)$ and $\mathcal{X}' = (\Omega', S')$ be coherent configurations.

Let $\mathcal{X} = (\Omega, S)$ and $\mathcal{X}' = (\Omega', S')$ be coherent configurations.

(日) (日) (日) (日) (日) (日) (日)

Algebraic isomorphism:

a bijection $\varphi: S \to S'$ such that $c_{rs}^t = c_{r\varphi s\varphi}^{t\varphi}$ for all r, s, t.

Let $\mathcal{X} = (\Omega, S)$ and $\mathcal{X}' = (\Omega', S')$ be coherent configurations.

(日) (日) (日) (日) (日) (日) (日)

Algebraic isomorphism:

a bijection $\varphi: S \to S'$ such that $c_{rs}^t = c_{r\varphi s\varphi}^{t\varphi}$ for all r, s, t.

Combinatorial isomorphism:

a bijection $f: \Omega \to \Omega'$ such that $s^f \in S'$ for all $s \in S$.

Let $\mathcal{X} = (\Omega, S)$ and $\mathcal{X}' = (\Omega', S')$ be coherent configurations.

Algebraic isomorphism:

a bijection $\varphi: S \to S'$ such that $c_{rs}^t = c_{r^{\varphi}s^{\varphi}}^{t^{\varphi}}$ for all r, s, t.

Combinatorial isomorphism:

a bijection $f: \Omega \to \Omega'$ such that $s^f \in S'$ for all $s \in S$.

Remarks

a combinatorial isomorphism *f* induces an algebraic isomorphism φ by s^φ := s^f for all s ∈ S;

Let $\mathcal{X} = (\Omega, S)$ and $\mathcal{X}' = (\Omega', S')$ be coherent configurations.

Algebraic isomorphism:

a bijection $\varphi: S \to S'$ such that $c_{rs}^t = c_{r^{\varphi}s^{\varphi}}^{t^{\varphi}}$ for all r, s, t.

Combinatorial isomorphism:

a bijection $f: \Omega \to \Omega'$ such that $s^f \in S'$ for all $s \in S$.

Remarks

- a combinatorial isomorphism *f* induces an algebraic isomorphism φ by s^φ := s^f for all s ∈ S;
- "X is uniquely determined by the intersection numbers" (i.e., is separable) means that any algebraic isomorphism is induced by combinatorial.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

Proposition

Let $G \leq Sym(\Omega)$ be a permutation group.

Proposition

Let $G \leq Sym(\Omega)$ be a permutation group. Then

 $Inv(G) = (\Omega, S)$ with $S = Orb(G, \Omega \times \Omega)$,

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

is a coherent configuration (associated with G).

Proposition

Let $G \leq Sym(\Omega)$ be a permutation group. Then

 $Inv(G) = (\Omega, S)$ with $S = Orb(G, \Omega \times \Omega)$,

is a coherent configuration (associated with G).

Example: *G* is regular, i.e., Inv(G) is a thin scheme

• S = G, where $g \in G$ is identified with $\{(\alpha, \alpha^G) : \alpha \in \Omega\}$,

A D F A 同 F A E F A E F A Q A

Proposition

Let $G \leq Sym(\Omega)$ be a permutation group. Then

 $Inv(G) = (\Omega, S)$ with $S = Orb(G, \Omega \times \Omega)$,

is a coherent configuration (associated with G).

Example: G is regular, i.e., Inv(G) is a thin scheme

• S = G, where $g \in G$ is identified with $\{(\alpha, \alpha^G) : \alpha \in \Omega\}$,

A D F A 同 F A E F A E F A Q A

• $c_{fg}^{h} = \delta_{fg,h}$, where δ is the Kronecker delta,

Proposition

Let $G \leq Sym(\Omega)$ be a permutation group. Then

 $Inv(G) = (\Omega, S)$ with $S = Orb(G, \Omega \times \Omega)$,

is a coherent configuration (associated with G).

Example: G is regular, i.e., Inv(G) is a thin scheme

- S = G, where $g \in G$ is identified with $\{(\alpha, \alpha^G) : \alpha \in \Omega\}$,
- $c_{fg}^{h} = \delta_{fg,h}$, where δ is the Kronecker delta,
- $G \cong H \Leftrightarrow \operatorname{Inv}(G) \cong \operatorname{Inv}(H)$ (algebraic and combinatorial).

Proposition

Let $G \leq Sym(\Omega)$ be a permutation group. Then

 $Inv(G) = (\Omega, S)$ with $S = Orb(G, \Omega \times \Omega)$,

is a coherent configuration (associated with G).

Example: G is regular, i.e., Inv(G) is a thin scheme

- S = G, where $g \in G$ is identified with $\{(\alpha, \alpha^G) : \alpha \in \Omega\}$,
- $c_{fg}^{h} = \delta_{fg,h}$, where δ is the Kronecker delta,
- $G \cong H \Leftrightarrow \operatorname{Inv}(G) \cong \operatorname{Inv}(H)$ (algebraic and combinatorial).

Thus, every thin scheme is separable.

Definition

A homogeneous coherent configuration $(1_{\Omega} \in S)$ is quasi-thin scheme if $n_s \leq 2$ for all $s \in S$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Definition

A homogeneous coherent configuration $(1_{\Omega} \in S)$ is quasi-thin scheme if $n_s \leq 2$ for all $s \in S$.

The index of a homogeneous coherent configuration is defined to be the number n/m, where $m = |\{s \in S : n_s = 1\}|$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Definition

A homogeneous coherent configuration $(1_{\Omega} \in S)$ is quasi-thin scheme if $n_s \leq 2$ for all $s \in S$.

The index of a homogeneous coherent configuration is defined to be the number n/m, where $m = |\{s \in S : n_s = 1\}|$.

(日) (日) (日) (日) (日) (日) (日)

Theorem (Muzychuk-P, 2012)

Let \mathcal{X} be a quasi-thin scheme such that $m \notin \{4,7\}$. Then

- $\mathcal{X} = Inv(G)$ for some $G \leq Sym(\Omega)$,
- X is separable.

Definition

A homogeneous coherent configuration $(1_{\Omega} \in S)$ is quasi-thin scheme if $n_s \leq 2$ for all $s \in S$.

The index of a homogeneous coherent configuration is defined to be the number n/m, where $m = |\{s \in S : n_s = 1\}|$.

(日) (日) (日) (日) (日) (日) (日)

Theorem (Muzychuk-P, 2012)

Let \mathcal{X} be a quasi-thin scheme such that $m \notin \{4,7\}$. Then

- $\mathcal{X} = Inv(G)$ for some $G \leq Sym(\Omega)$,
- X is separable.

Remarks:

• the condition $m \notin \{4,7\}$ is essential,

Definition

A homogeneous coherent configuration $(1_{\Omega} \in S)$ is quasi-thin scheme if $n_s \leq 2$ for all $s \in S$.

The index of a homogeneous coherent configuration is defined to be the number n/m, where $m = |\{s \in S : n_s = 1\}|$.

・ロト・日本・日本・日本・日本

Theorem (Muzychuk-P, 2012)

Let \mathcal{X} be a quasi-thin scheme such that $m \notin \{4,7\}$. Then

- $\mathcal{X} = Inv(G)$ for some $G \leq Sym(\Omega)$,
- X is separable.

Remarks:

- the condition $m \notin \{4,7\}$ is essential,
- the nonhomogeneous case is open.

Pseudocyclic schemes

The indistinguishing number of a relation $s \in S$ is defined to be

$$c(s) = \sum_{r \in S} c^s_{rr^*}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

The indistinguishing number of a relation $s \in S$ is defined to be

$$c(s) = \sum_{r \in S} c^s_{rr^*}.$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Definition

A homogeneous coherent configuration is pseudocyclic if $n_s = k$ and c(s) = k - 1 for some $k \ge 1$ and all $s \ne 1_{\Omega}$.

The indistinguishing number of a relation $s \in S$ is defined to be

$$c(s) = \sum_{r \in S} c^s_{rr^*}.$$

Definition

A homogeneous coherent configuration is pseudocyclic if $n_s = k$ and c(s) = k - 1 for some $k \ge 1$ and all $s \ne 1_{\Omega}$.

Theorem (Muzychuk-P, 2012)

Let \mathcal{X} be a pseudocyclic scheme such that $n > Ck^5$. Then

- $\mathcal{X} = \text{Inv}(G)$, where G is a Frobenius group of order nk,
- X is separable.

 $H^g \cap H \in \{1, H\}$ for all $g \in G$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

$$H^g \cap H \in \{1, H\}$$
 for all $g \in G$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Definition

A coherent configuration $\mathcal{X} = Inv(G)$ is a TI-scheme if G is transitive and its point stabilizer H is a TI-subgroup of G.

$$H^g \cap H \in \{1, H\}$$
 for all $g \in G$.

Definition

A coherent configuration $\mathcal{X} = Inv(G)$ is a TI-scheme if G is transitive and its point stabilizer H is a TI-subgroup of G.

Examples

• *G* is a Frobenius group and *H* is the complement (here \mathcal{X} is pseudocyclic),

$$H^g \cap H \in \{1, H\}$$
 for all $g \in G$.

Definition

A coherent configuration $\mathcal{X} = Inv(G)$ is a TI-scheme if G is transitive and its point stabilizer H is a TI-subgroup of G.

Examples

- *G* is a Frobenius group and *H* is the complement (here \mathcal{X} is pseudocyclic),
- *G* is a *p*-group (here \mathcal{X} is quasi-thin if p = 2).

Proposition

Let $G \leq \text{Sym}(\Omega)$ is transitive and H a point stabilizer. Suppose that H is a TI-subgroup of G. Then

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

• $|\Delta| \in \{1, k\}$ for all *H*-orbits Δ , where k = |H|,

Proposition

Let $G \leq \text{Sym}(\Omega)$ is transitive and H a point stabilizer. Suppose that H is a TI-subgroup of G. Then

- $|\Delta| \in \{1, k\}$ for all *H*-orbits Δ , where k = |H|,
- the number of the one-element Δ equals $m := |N_G(H) : H|$,

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Proposition

Let $G \leq \text{Sym}(\Omega)$ is transitive and H a point stabilizer. Suppose that H is a TI-subgroup of G. Then

- $|\Delta| \in \{1, k\}$ for all *H*-orbits Δ , where k = |H|,
- the number of the one-element Δ equals $m := |N_G(H) : H|$,
- $c \leq mk$, where

$$c = \max_{C \in G/H \setminus \{H\}} \operatorname{Fix}(C)$$

(日) (日) (日) (日) (日) (日) (日)

with $Fix(C) = |\{\alpha \in \Omega : G_{\alpha} \cap C \text{ is not empty}\}|.$

Proposition

Let $G \leq \text{Sym}(\Omega)$ is transitive and H a point stabilizer. Suppose that H is a TI-subgroup of G. Then

- $|\Delta| \in \{1, k\}$ for all *H*-orbits Δ , where k = |H|,
- the number of the one-element Δ equals $m := |N_G(H) : H|$,
- $c \leq mk$, where

$$c = \max_{C \in G/H \setminus \{H\}} \operatorname{Fix}(C)$$

with $Fix(C) = |\{\alpha \in \Omega : G_{\alpha} \cap C \text{ is not empty}\}|.$

Definition

A coherent configuration $\mathcal{X} = (\Omega, S)$ is a pseudo TI-scheme if

• there is $k \ge 1$ such that $n_s \in \{1, k\}$ for all $s \in S$,

Proposition

Let $G \leq \text{Sym}(\Omega)$ is transitive and H a point stabilizer. Suppose that H is a TI-subgroup of G. Then

- $|\Delta| \in \{1, k\}$ for all *H*-orbits Δ , where k = |H|,
- the number of the one-element Δ equals $m := |N_G(H) : H|$,
- $c \leq mk$, where

$$c = \max_{C \in G/H \setminus \{H\}} \operatorname{Fix}(C)$$

with $Fix(C) = |\{\alpha \in \Omega : G_{\alpha} \cap C \text{ is not empty}\}|.$

Definition

A coherent configuration $\mathcal{X} = (\Omega, S)$ is a pseudo TI-scheme if

- there is $k \ge 1$ such that $n_s \in \{1, k\}$ for all $s \in S$,
- $c(s) \leq mk$ for all $s \in S$, where $m = |\{s \in S : n_s = 1\}|$.

Main results

Theorem (Chen-P, 2016)

Every pseudo-TI scheme of valency k and index greater than $1 + 6k^2(k - 1)$, is a separable TI-scheme.

(ロ) (同) (三) (三) (三) (○) (○)

Theorem (Chen-P, 2016)

Every pseudo-TI scheme of valency k and index greater than $1 + 6k^2(k - 1)$, is a separable TI-scheme.

Corollary

Any pseudocyclic scheme of valency k > 1 and such that $n > 6k^3$ is a separable Frobenius scheme.

(日) (日) (日) (日) (日) (日) (日)

Theorem (Chen-P, 2016)

Every pseudo-TI scheme of valency k and index greater than $1 + 6k^2(k - 1)$, is a separable TI-scheme.

Corollary

Any pseudocyclic scheme of valency k > 1 and such that $n > 6k^3$ is a separable Frobenius scheme.

Corollary

Any scheme of prime degree p and valency less than $\sqrt[3]{p}$ is a separable cyclotomic scheme over \mathbb{F}_{p} .

Theorem (Chen-P, 2016)

Every pseudo-TI scheme of valency k and index greater than $1 + 6k^2(k - 1)$, is a separable TI-scheme.

Corollary

Any pseudocyclic scheme of valency k > 1 and such that $n > 6k^3$ is a separable Frobenius scheme.

Corollary

Any scheme of prime degree p and valency less than $\sqrt[3]{p}$ is a separable cyclotomic scheme over \mathbb{F}_{p} .