
On the isomorphism problem for Cayley graphs
over abelian p-groups via S-rings

Grigory Ryabov

Novosibirsk State University

G2S2-2016

1 / 14



Part I: S-rings
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S-rings

G is a finite group with the identity element e, X ⊆ G

ZG = {
∑

g∈G agg : g ∈ G} is the group ring
X =

∑
x∈X x (an element of the group ring ZG )

Definition
A ring A ⊆ ZG is called an S-ring over G , if there exists a partition
S = S(A) of G such that:

{e} ∈ S,
X ∈ S ⇒ X−1 ∈ S,
A = SpanZ{X : X ∈ S}.

The elements of S are the basic sets of A.
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Isomorphisms

A and A′
are S-rings over G and G

′
respectively.

Definitions
A ring isomorphism ϕ : A → A′

is called an algebraic
isomorphism from A to A′

if for every X ∈ S(A) there exists
X

′ ∈ S(A′
) such that ϕ(X ) = X

′
. The mapping

X → X
′

= Xϕ is a bijection from S(A) to S(A′
).

A bijection f : G → G
′
is called a (combinatorial) isomorphism

from A to A′
if X 7→ f (X ) induces an algebraic isomorphism.

A group isomorphism f : G → G
′
is called a Cayley

isomorphism from A to A′
if for every X ∈ S(A) there exists

X
′ ∈ S(A′

) such that f (X ) = X
′
.

Cayley isomorphism ⇒ isomorphism ⇒ algebraic isomorphism
Algebraic isomorphism ; isomorphism ; Cayley isomorphism
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Schurity

Gright = {x 7→ xg , x ∈ G : g ∈ G} ≤ Sym(G )

Gright ≤ K ≤ Sym(G )

Ke is the stabilizer of e in K

Orb(Ke ,G ) is the set of all orbits Ke on G

Theorem (Schur, 1933)
Z-module A = A (K ,G ) = SpanZ {X : X ∈ Orb (Ke ,G )} is an
S-ring over G .

Definition (Pöschel, 1974)
An S-ring A over G is called schurian, if A = A(K ,G ) for some
permutation group K .
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Schurity

Definition (Pöschel, 1974)
A finite group G is called a Schur group, if every S-ring over G is
schurian.

Problem
Determine all Schur groups.

Every S-ring over a Schur group is determined by a suitable
permutation group.
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Separability

Iso(A,A′
, ϕ) is the set of isomorphisms from A to A′

that induce
given algebraic isomorphism ϕ.

Definition
Let K be a class of S-rings closed under Cayley isomorphisms. A is
called separable with respect to K if Iso(A,A′

, ϕ) 6= ∅ for all
algebraic isomorphisms ϕ : A → A′

, where A′ ∈ K.

Every separable S-ring is determined up to isomorphism only by its
combinatorial parameters (so-called structure constants).

Problem
Determine all groups G such that every S-ring over G is separable
with respect to K.
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Cyclic p-groups

Theorem (Pöschel, 1974)
Cyclic p-groups are Schur. Moreover, if p > 3, then p-group G is
Schur if and only if it is cyclic.

Theorem (Evdokimov-Ponomarenko, 2015)
Every S-ring over a cyclic p-group is separable with respect to the
class of circulant S-rings.

Theorem (Evdokimov-Ponomarenko, 2002)
There exists a cyclic group G and an S-ring A over G such that:

G is not Schur;
A is not separable with respect to the class of circulant
S-rings.
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Noncyclic p-groups

Cn is the cyclic group of order n.

Evdokimov, Kovács, Muzychuk, Pech, Ponomarenko, Reichard,
R., Vasil’ev, ...-2015:
Let G be a noncyclic Schur p-group. Then p ∈ {2, 3} and G is
isomorphic to one of the following groups:

1 C2 × C2k , C3 × C3k , k ≥ 1;

2 elementary abelian groups of order 4, 8, 9, 16, 27, 32;
3 quaternion group Q8;
4 G16 = 〈a, b, c |a4 = b2 = c2 = [a, b] = [a, c] = 1, [b, c] = a2〉;
5 dihedral groups D2k , k ≥ 1.

Moreover, groups (1)− (4) are Schur. Groups (5) are Schur
whenever 1 ≤ k ≤ 5.
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Main results I

G = Cp × Cpk , p ∈ {2, 3}, k ≥ 1.
All S-rings over G were classified by Muzychuk and Ponomarenko
for p = 2 and by Ryabov for p = 3. By using this classification we
prove the following theorem.

Theorem 1

Every S-ring over G is separable with respect to the class of S-rings
over abelian groups.
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Part II: Isomorphism problem for Cayley graphs
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Isomorphism problem

Isomorphism problem

Given Cayley graphs Γ and Γ
′
over G check whether Γ ∼= Γ

′
.

Theorem (Evdokimov-Ponomarenko,2003, Muzychuk, 2004)

Let Γ and Γ
′
be n-vertex circulant graphs. Then it can be tested in

time nO(1) whether Γ ∼= Γ
′
.
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Connection with S-rings

1 Let Γ = Cay(G ,X ) and Γ
′

= Cay(G
′
,X

′
) be Cayley graphs

over the groups of the same order.
2 By using the Weisfeiler-Leman algorithm we can in time
|G |O(1)

construct the S-rings A = A(Γ) and A′
= A′

(Γ
′
) over G and

G
′
respectively;

find an algebraic isomorphism ϕ : A → A′
such that Xϕ = X

′

or establish that there are no such algebraic isomorphisms.
3 Every isomorphism f : Γ→ Γ

′
induces ϕ such that Xϕ = X

′
.

ϕ does not depend on the choice of f .
If there are no such ϕ then Γ � Γ

′

4 If such algebraic isomorphism ϕ exists and A is separable then
Iso(A,A′

, ϕ) 6= ∅ and hence Iso(Γ, Γ
′
) 6= ∅ .

13 / 14



Main results II

G = Cp × Cpk , p ∈ {2, 3}, k ≥ 1, |G | = n.
G is given explicitly.
Pn is the class of all graphs on n vertices that isomorphic to Cayley
graphs over G .

Theorem 2

Given graphs Γ, Γ
′ ∈ Pn it can be tested in time nO(1) whether

Γ ∼= Γ
′
.

Theorem 2 immediately follows from Theorem 1.

In fact, Theorem 1 implies the next statement.

Theorem 2
′

Given Cayley graph Γ over G and given Cayley graph Γ
′
over an

arbitrary abelian group G
′
it can be tested in time nO(1) whether

Γ ∼= Γ
′
.
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