On the isomorphism problem for Cayley graphs over abelian *p*-groups via *S*-rings

Grigory Ryabov

Novosibirsk State University

G2S2-2016

Part I: S-rings

S-rings

• G is a finite group with the identity element $e, X \subseteq G$

•
$$\mathbb{Z}G = \{\sum_{g \in G} a_g g : g \in G\}$$
 is the group ring

•
$$\underline{X} = \sum_{x \in X} x$$
 (an element of the group ring $\mathbb{Z}G$)

Definition

A ring $\mathcal{A} \subseteq \mathbb{Z}G$ is called an S-ring over G, if there exists a partition $\mathcal{S} = \mathcal{S}(\mathcal{A})$ of G such that:

•
$$\{e\} \in \mathcal{S},$$

•
$$X \in S \Rightarrow X^{-1} \in S$$
,

•
$$\mathcal{A} = \mathsf{Span}_{\mathbb{Z}} \{ \underline{X} : X \in \mathcal{S} \}.$$

The elements of S are the basic sets of A.

Isomorphisms

 $\mathcal A$ and $\mathcal A^{'}$ are S-rings over G and G^{'} respectively.

Definitions

- A ring isomorphism φ : A → A' is called an algebraic isomorphism from A to A' if for every X ∈ S(A) there exists X' ∈ S(A') such that φ(X) = X'. The mapping X → X' = X^φ is a bijection from S(A) to S(A').
- A bijection $f : G \to G'$ is called a (combinatorial) isomorphism from \mathcal{A} to \mathcal{A}' if $\underline{X} \mapsto \underline{f(X)}$ induces an algebraic isomorphism.
- A group isomorphism $f : G \to G'$ is called a Cayley isomorphism from \mathcal{A} to \mathcal{A}' if for every $X \in \mathcal{S}(\mathcal{A})$ there exists $X' \in \mathcal{S}(\mathcal{A}')$ such that f(X) = X'.

Isomorphisms

 $\mathcal A$ and $\mathcal A^{'}$ are S-rings over G and G^{'} respectively.

Definitions

- A ring isomorphism φ : A → A' is called an algebraic isomorphism from A to A' if for every X ∈ S(A) there exists X' ∈ S(A') such that φ(X) = X'. The mapping X → X' = X^φ is a bijection from S(A) to S(A').
- A bijection $f : G \to G'$ is called a (combinatorial) isomorphism from \mathcal{A} to \mathcal{A}' if $\underline{X} \mapsto \underline{f(X)}$ induces an algebraic isomorphism.
- A group isomorphism f : G → G' is called a Cayley isomorphism from A to A' if for every X ∈ S(A) there exists X' ∈ S(A') such that f(X) = X'.

 $\begin{array}{l} {\sf Cayley \ isomorphism} \Rightarrow {\sf isomorphism} \Rightarrow {\sf algebraic \ isomorphism} \\ {\sf Algebraic \ isomorphism} \Rightarrow {\sf isomorphism} \Rightarrow {\sf Cayley \ isomorphism} \end{array}$

•
$$G_{right} = \{x \mapsto xg, x \in G : g \in G\} \leq Sym(G)$$

- $G_{right} \leq K \leq Sym(G)$
- K_e is the stabilizer of e in K
- $Orb(K_e, G)$ is the set of all orbits K_e on G

Theorem (Schur, 1933) \mathbb{Z} -module $\mathcal{A} = \mathcal{A}(K, G) = \operatorname{Span}_{\mathbb{Z}} \{ \underline{X} : X \in \operatorname{Orb}(K_e, G) \}$ is an *S*-ring over *G*.

•
$$G_{right} = \{x \mapsto xg, x \in G : g \in G\} \leq Sym(G)$$

- $G_{right} \leq K \leq Sym(G)$
- K_e is the stabilizer of e in K
- $Orb(K_e, G)$ is the set of all orbits K_e on G

Theorem (Schur, 1933) \mathbb{Z} -module $\mathcal{A} = \mathcal{A}(K, G) = \text{Span}_{\mathbb{Z}} \{ \underline{X} : X \in \text{Orb}(K_e, G) \}$ is an *S*-ring over *G*.

Definition (Pöschel, 1974) An S-ring A over G is called schurian, if A = A(K, G) for some permutation group K.

Definition (Pöschel, 1974)

A finite group G is called a Schur group, if every S-ring over G is schurian.

Definition (Pöschel, 1974)

A finite group G is called a Schur group, if every S-ring over G is schurian.

Problem

Determine all Schur groups.

Every S-ring over a Schur group is determined by a suitable permutation group.

Separability

 $\operatorname{Iso}(\mathcal{A}, \mathcal{A}', \varphi)$ is the set of isomorphisms from \mathcal{A} to \mathcal{A}' that induce given algebraic isomorphism φ .

Definition

Let \mathcal{K} be a class of *S*-rings closed under Cayley isomorphisms. \mathcal{A} is called separable with respect to \mathcal{K} if $\mathsf{Iso}(\mathcal{A}, \mathcal{A}', \varphi) \neq \emptyset$ for all algebraic isomorphisms $\varphi : \mathcal{A} \to \mathcal{A}'$, where $\mathcal{A}' \in \mathcal{K}$.

Every separable S-ring is determined up to isomorphism only by its combinatorial parameters (so-called structure constants).

Separability

 $\operatorname{Iso}(\mathcal{A}, \mathcal{A}', \varphi)$ is the set of isomorphisms from \mathcal{A} to \mathcal{A}' that induce given algebraic isomorphism φ .

Definition

Let \mathcal{K} be a class of *S*-rings closed under Cayley isomorphisms. \mathcal{A} is called separable with respect to \mathcal{K} if $\mathsf{Iso}(\mathcal{A}, \mathcal{A}', \varphi) \neq \emptyset$ for all algebraic isomorphisms $\varphi : \mathcal{A} \to \mathcal{A}'$, where $\mathcal{A}' \in \mathcal{K}$.

Every separable S-ring is determined up to isomorphism only by its combinatorial parameters (so-called structure constants).

Problem

Determine all groups G such that every S-ring over G is separable with respect to \mathcal{K} .

Cyclic *p*-groups

Theorem (Pöschel, 1974)

Cyclic *p*-groups are Schur. Moreover, if p > 3, then *p*-group *G* is Schur if and only if it is cyclic.

Theorem (Evdokimov-Ponomarenko, 2015)

Every S-ring over a cyclic p-group is separable with respect to the class of circulant S-rings.

Cyclic *p*-groups

Theorem (Pöschel, 1974)

Cyclic *p*-groups are Schur. Moreover, if p > 3, then *p*-group *G* is Schur if and only if it is cyclic.

Theorem (Evdokimov-Ponomarenko, 2015)

Every S-ring over a cyclic p-group is separable with respect to the class of circulant S-rings.

Theorem (Evdokimov-Ponomarenko, 2002)

There exists a cyclic group G and an S-ring A over G such that:

- *G* is not Schur;
- \mathcal{A} is not separable with respect to the class of circulant *S*-rings.

Noncyclic *p*-groups

 C_n is the cyclic group of order n.

Evdokimov, Kovács, Muzychuk, Pech, Ponomarenko, Reichard, R., Vasil'ev, ...-2015:

Let G be a noncyclic Schur p-group. Then $p \in \{2,3\}$ and G is isomorphic to one of the following groups:

1
$$C_2 \times C_{2^k}, \ C_3 \times C_{3^k}, \ k \ge 1;$$

- elementary abelian groups of order 4, 8, 9, 16, 27, 32;
- 3 quaternion group Q_8 ;
- (a) $G_{16} = \langle a, b, c | a^4 = b^2 = c^2 = [a, b] = [a, c] = 1, [b, c] = a^2 \rangle;$
- 5 dihedral groups D_{2^k} , $k \ge 1$.

Moreover, groups (1) – (4) are Schur. Groups (5) are Schur whenever $1 \le k \le 5$.

Main results I

 $G = C_p \times C_{p^k}$, $p \in \{2,3\}$, $k \ge 1$. All S-rings over G were classified by Muzychuk and Ponomarenko for p = 2 and by Ryabov for p = 3. By using this classification we prove the following theorem.

Theorem 1

Every S-ring over G is separable with respect to the class of S-rings over abelian groups.

Part II: Isomorphism problem for Cayley graphs

Isomorphism problem

Isomorphism problem Given Cayley graphs Γ and Γ' over G check whether $\Gamma \cong \Gamma'$.

Isomorphism problem

Isomorphism problem

Given Cayley graphs Γ and Γ' over G check whether $\Gamma \cong \Gamma'$.

Theorem (Evdokimov-Ponomarenko,2003, Muzychuk, 2004)

Let Γ and Γ' be *n*-vertex circulant graphs. Then it can be tested in time $n^{O(1)}$ whether $\Gamma \cong \Gamma'$.

Connection with S-rings

- **1** Let $\Gamma = \operatorname{Cay}(G, X)$ and $\Gamma' = \operatorname{Cay}(G', X')$ be Cayley graphs over the groups of the same order.
- 2 By using the Weisfeiler-Leman algorithm we can in time $|G|^{O(1)}$
 - construct the S-rings $\mathcal{A} = \mathcal{A}(\Gamma)$ and $\mathcal{A}' = \mathcal{A}'(\Gamma')$ over G and G' respectively;
 - find an algebraic isomorphism $\varphi : \mathcal{A} \to \mathcal{A}'$ such that $X^{\varphi} = X'$ or establish that there are no such algebraic isomorphisms.
- 3 Every isomorphism f: Γ → Γ' induces φ such that X^φ = X'.
 φ does not depend on the choice of f.
 If there are no such φ then Γ ≇ Γ'
- ④ If such algebraic isomorphism φ exists and A is separable then lso(A, A', φ) ≠ Ø and hence lso(Γ, Γ') ≠ Ø.

Main results II

$$G = C_p \times C_{p^k}$$
, $p \in \{2, 3\}$, $k \ge 1$, $|G| = n$.
G is given explicitly.
 \mathcal{P}_n is the class of all graphs on n vertices that isomorphic to Cayley graphs over G.

Theorem 2

Given graphs $\Gamma, \Gamma' \in \mathcal{P}_n$ it can be tested in time $n^{O(1)}$ whether $\Gamma \cong \Gamma'$.

Theorem 2 immediately follows from Theorem 1.

Main results II

$$\begin{split} & G = C_p \times C_{p^k}, \ p \in \{2,3\}, \ k \geq 1, \ |G| = n. \\ & G \text{ is given explicitly.} \\ & \mathcal{P}_n \text{ is the class of all graphs on } n \text{ vertices that isomorphic to Cayley} \\ & \text{graphs over } G. \end{split}$$

Theorem 2

Given graphs $\Gamma, \Gamma' \in \mathcal{P}_n$ it can be tested in time $n^{O(1)}$ whether $\Gamma \cong \Gamma'$.

Theorem 2 immediately follows from Theorem 1. In fact, Theorem 1 implies the next statement.

Theorem 2'

Given Cayley graph Γ over G and given Cayley graph Γ' over an arbitrary abelian group G' it can be tested in time $n^{O(1)}$ whether $\Gamma \cong \Gamma'$.