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Boolean function

The Boolean function f is a map Fn
2 → F2.

Fn
2 is a linear n-dimensional vector space over F2 but it also can

be considered as a vector set V n or n-dimensional Boolean cube
(or hypercube, or Hamming graph).

Bn = Bn(V n, En).

supp(f) = {x ∈ Fn
2 | f(x) = 1} is the support of f .

Bn[supp(f)] — subgraph of Bn induced by supp(f).

wt(f) = |supp(f)| is the weight of f .
f̄ = f ⊕ 1 is the negation of f ;
supp(f̄) = V n \ supp(f)
f is balanced if wt(f) = wt(f̄) = 2n−1.
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Walsh coefficients

Definition
The Walsh Transform of a Boolean function f is the
integer-valued function on Fn

2 defined as follows:

Wf (u) =
∑
x∈Fn

2

(−1)f(x)+<u,x>.

For each u ∈ Fn
2 the value Wf (u) is called the Walsh coefficient

or the spectral coefficient.

< u, x >= u1x1 + · · ·+ unxn is a scalar product.
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Fourier coefficients

Ff (u) =
∑
x∈Fn

2

f(x)(−1)<u,x>

Wf (u) = 2nδ0u − 2Ff (u).

Sometimes Walsh coefficients are called Fourier coefficients too
especially if f is defined at {−1, 1}n.
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Inversion formula

Inversion formula:

(−1)f(x) = 2−n
∑
u∈Fn

2

Wf (u)(−1)<u,x>

{(−1)<u,x>}|x∈Fn
2
— is the orthogonal basis in 2n-dimensional

vector space R2n .

2−nWf (u) — expansion coefficients.

Inversion formula is a criterion for {W (u)}|u∈Fn
2
to correspond

to some Boolean function.
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Titsworth’s Theorem

Another criterion for {W (u)}|u∈Fn
2
to correspond to some

Boolean function:
Titsworth’s Theorem
{W (u)}|u∈Fn

2
corresponds to some Boolean function

iff
a)

∑
u∈Fn

2

W 2(u) = 22n (Parseval’s identity);

b)
∑

u∈Fn
2

W (u)W (u+ s) = 0 for any s ∈ Fn
2 , s 6= 0.
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Nonlinearity

The Hamming distance d(x′, x′′) between two vectors x′ and x′′

is the number of components where vectors x′ and x′′ differ. For
given function f from Fn

2 the minimum of distances d(f, l)
where l runs the set of all affine functions on Fn

2 is called the
nonlinearity of f and denoted by nl(f).

The nonlinearity of a function f on Fn
2 is expressed via its

Walsh coefficients by formula

nl(f) = 2n−1 − 1

2
max
u∈Fn

2

|Wf (u)|.

Nonlinearity is invariant under any affine transformation of Fn
2 .
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Bent functions

The Boolean function is called the bent function if the values of
its Walsh coefficients at all vectors are exactly ±2n/2. Bent
functions exist for all even n and do not exist for all odd n. A
bent function is the function with maximum possible
nonlinearity 2n−1 − 2(n/2)−1 among all functions of n variables
for even n.

f is bent iff Wf (u) = ±2n/2 for any u ∈ Fn
2

2-valued Walsh spectrum
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Plateaued functions

f is called plateaued iff for some integer c we have
Wf (u) ∈ {0,±2c for any u ∈ Fn

2 .

3-valued Walsh spectrum
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Weight of f via Wf(0).

f is balanced if wt(f) = wt(f̄) = 2n−1.

f is balanced iff Wf (0) = 0.

wt(f) = 2n−1 − 1
2Wf (0)
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Resiliency (correlation immunity)

A Boolean function f is called correlation-immune of order m if
wt(f ′) = wt(f)/2m for any its subfunction f ′ of n−m variables.
The balanced correlation-immune function of order m is called
m-resilient. In other words, a Boolean function f is called
m-resilient if wt(f ′) = 2n−m−1 for any its subfunction f ′ of
n−m variables.

A function f on Fn
2 is correlation-immune of order m iff

Wf (u) = 0 for all vectors u ∈ Fn
2 such that 1 ≤ |u| ≤ m.

In general, the order of correlation immunity is not invariant
under affine transformation but it is invariant under isometric
transformations.
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If for a Boolean function f :
Wf (u) 6= 0⇒ |u| ∈ {0,m}
then f corresponds to 2-color perfect coloring or equitable
partition.
Fn
2 = supp(f)

⊔
supp(f̄)

Bn[supp(f)] is (n− c1)-regular
Bn[supp(f̄)] is (n− c2)-regular

c1 + c2
2

= m

wt(f) · c1 = (2n − wt(f)) · c2, wt(f) = 2n−1 − 1

2
Wf (0)

If additionally Wf (0) = 0 (i. e. f is balanced) then c1 = c2 = m.
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Fon-Der-Flaass Theorem

Let f(x1, . . . , xn) be nonconstant unbalanced correlation
immune of order m. Then

m ≤ 2n

3
− 1.

Moreover, if m = 2n
3 − 1 then

(
supp(f), supp(f̄)

)
is an equitable

partition.
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Khalyavin’s proof of Fon-Der-Flaass Theorem

f is unbalanced ⇒Wf (0) 6= 0
f in nonconstant ⇒ ∃s 6= 0 : Wf (s) 6= 0
f is m-CI ⇒ ∀u, 1 ≤ |u| ≤ m : Wf (u) = 0⇒ |s| ≥ m+ 1
By Titsworth’s Theorem

∑
u∈Fn

2

W (u)W (u+ s) = 0

In the last sum nonzero equal summands for u = 0, s
Suppose that m > 2n

3 − 1. Then |u|, |s| > 2n
3 ⇒ |u+ s| < 2n

3
So, the sum has exactly two equal nonzero summands and sum
is 0, contradiction
If m = 2n

3 − 1 then the only possibility for other nonzero
summands in the sum is |u|, |s|, |u+ s| = 2n

3
So, Wf (u) 6= 0 follows |u| ∈ {0,m+ 1} ⇒

(
supp(f), supp(f̄)

)
is

an equitable partition
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Families of equitable partitions on Fon-Der-Flaass bound

Sf =


0 0 0
0 1 1
1 0 1
1 1 0

 Sf =



0 0 0 0 0 0
0 0 1 1 1 1
0 1 0 1 1 1
0 1 1 0 1 1
0 1 1 1 0 1
0 1 1 1 1 0
1 0 0 1 1 1
1 0 1 0 1 1
1 0 1 1 0 1
1 0 1 1 1 0
1 1 0 0 1 1
1 1 0 1 0 1
1 1 0 1 1 0
1 1 1 0 0 1
1 1 1 0 1 0
1 1 1 1 0 0


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Transform xi → yi,1 ⊕ · · · ⊕ yi,l for all i = 1, . . . , n keeps the
property of a function to be an equitable partition but does not
change cardinality and rank of the spectrum support.

xi → yi,1 ⊕ yi,2 ⊕ yi,3, i = 1, 2, 3 :

Sf =


0 0 0
0 1 1
1 0 1
1 1 0

→ Sf ′ =


0 0 0 0 0 0 0 0 0
0 0 0 1 1 1 1 1 1
1 1 1 0 0 0 1 1 1
1 1 1 1 1 1 0 0 0


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c-regular functions

If c1 = c2 = c then f is called c-regular

f(x1, . . . , xn) is c-regular ⇒
⇒ f(x1, . . . , xn)⊕ x1 ⊕ · · · ⊕ xn is (n− c)-regular

f(x1, . . . , xn) is c-regular ⇒
⇒ f(x1, . . . , xn)⊕ xn+1 is (c+ 1)-regular
(xn+1 is a linear variable)

f(x1, . . . , xn) is c-regular ⇒
⇒ g(x1, . . . , xn+1) = f(x1, . . . , xn) is c-regular
(xn+1 is a fictitious (nonessential) variable)
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Let c = const, c ≥ 2.
Then the maximal n such that there exists a c-regular function
of n essential variables satisfies

3 · 2c−1 − 2 ≤ maxn ≤ c · 2c−1

or (reformulation)

For given n the minimal possible c such that there exist
c-regular function of n essential variables satisfies

min c = log2 n+O(log2 log2 n)
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Comparing with Simon–Wegener Theorem

Simon–Wegener Theorem
f depends of n variables, all variables are essential
In Bn[supp(f)] for any x ∈ supp(f) : deg(f) ≥ n− c
In Bn[supp(f̄)] for any x ∈ supp(f̄) : deg(f) ≥ n− c
Then min c = (1/2) log2 n+O(log2 log2 n)

Theorem for regular functions (T. 2001)
f depends of n variables, all variables are essential
In Bn[supp(f)] for any x ∈ supp(f) : deg(f) = n− c
In Bn[supp(f̄)] for any x ∈ supp(f̄) : deg(f) = n− c
Then min c = log2 n+O(log2 log2 n)
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Plateaued functions with the same Walsh spectrum
support

It is given the Walsh spectrum support Sf

It is given that f is plateaued

|Sf | = 4h, Wf ∈ {0,±2n−h}

To reconstruct f t. i. to define signs of Walsh coefficients from
Sf .
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Motivation from autocorrelation coefficients

Autocorrelation coefficients ∆f : Fn
2 → [−2n, 2n]

∆f (u) =
∑
x∈Fn

2

(−1)f(x)+f(x+u)

∆f (u) = 2−n
∑
x∈Fn

2

W 2
f (x)(−1)<u,x>

W 2
f (v) =

∑
u∈Fn

2

∆f (u)(−1)<u,v>

So, if we know all autocorrelation coefficients of f then we know
only all squares of Walsh coefficients, i. e. we don’t know signs
of Walsh coefficients.
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Necessary conditions on matrix of Sf

Some structural conditions and prohibited configurations
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Study placements of ± by means of Titsworth’s Theorem

∑
u∈Fn

2

W (u)W (u+ s) = 0 for any s ∈ Fn
2 , s 6= 0.

f is plateaued ⇒ all nonzero Walsh coefficients are equal by
absolute value.

Divide KSf
into subclasses of parallel edges. For each direction

the number of edges with the same signs at their ends must be
equal to the number of edges with different signs at their ends
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|Sf | = 4 case

4 vectors from Sf must satisfy x1 + x2 + x3 + x4 = 0.
It is possible to shift Sf by an affine transformation to
{(0, 0, . . . ), (0, 1, . . . ), (1, 0, . . . ), (1, 1, . . . )}. Affine rank of Sf is
2.

i ii i
(0, 0) (1, 0)

(0, 1) (1, 1)

+ +

+ −
��@@

i ii i
(0, 0) (1, 0)

(0, 1) (1, 1)

− −

− +

��@@i ii i
(0, 0) (1, 0)

(0, 1) (1, 1)

+ +

− +

��@@

i ii i
(0, 0) (1, 0)

(0, 1) (1, 1)

− −

+ −

��@@i ii i
(0, 0) (1, 0)

(0, 1) (1, 1)

− +

+ +

��@@ i ii i
(0, 0) (1, 0)

(0, 1) (1, 1)

+ −

− −
��@@

i ii i
(0, 0) (1, 0)

(0, 1) (1, 1)

+ −

+ +

��@@ i ii i
(0, 0) (1, 0)

(0, 1) (1, 1)

− +

− −
��@@

8 functions with given spectrum support Sf , |Sf | = 4.
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|Sf | = 16 case

4 ≤ Affine rank of Sf ≤ 6 (proven theoretically).

Number of ways to place ± is
7 · 27 if Affine rank of Sf is 4,
3 · 27 if Affine rank of Sf is 5,

27 if Affine rank of Sf is 6

(computer search fact)

Yuriy Tarannikov Lomonosov Moscow State University
On plateaued Boolean functions with the same spectrum support



Some examples

Bent functions, Sf = Fn
2 , n is even. The number of n-variable

bent functions is unknown for n > 8.
99270589265934370305785861242880 ≈ 2106 for n = 8
(Langevin, Leander 2011)

[9, 4, 240]-CI functions
Sf = {x ∈ F9

2 | |x| ∈ {0, 5, 6, 7, 8}}.(
9
0

)
+
(
9
5

)
+
(
9
6

)
+
(
9
7

)
+
(
9
8

)
= 256 = 44

Beginning with 2000 false proofs that such function does not
exists
Khalyavin (2010) had constructed the function with such
parameters (advanced algorithms + computer search)

[17, 8, 216 − 28]-CI functions
Sf = {x ∈ F17

2 | |x| ∈ {0, 9, 10, 11, 12, 13, 14, 15, 16}}
Open problem
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Recursive sequence of Boolean functions

nk+1 = 2nk + 2, k = 0, 1, . . . , n0 = 4.

f0 ∈ P (4)
2 , f0(x1, x2, x3, x4) = (x1 ⊕ x2)(x3 ⊕ x4)⊕ x1 ⊕ x3

fk+1 ∈ P
(nk+1)
2 , nk+1 = 2nk + 2,

(x, y, z) ∈ F
nk+1

2 , x, y ∈ Fnk
2 , z ∈ F2

2

fk+1(x, y, z) =
(z1 ⊕ z2 ⊕ 1)(fk(x)⊕ 〈1nk , y〉)⊕ (z1 ⊕ z2)(fk(y)⊕ 〈1nk , x〉)⊕ z1.

nk = 6 · 2k − 2,
f is plateaued
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f0 as 2-regular function

B4[supp(f)] — red, 2-regular
B4[supp(f̄)] — green, 2-regular
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Correspondent Walsh spectra

Ak is the matrix for Sfk , A0 =


1 0 1 0
1 0 0 1
0 1 1 0
0 1 0 1



Ak =



0 1

Ak−1 1 . . . 1

.

.

.
.
.
.

0 1
1 0

Ak−1 1 . . . 1

.

.

.
.
.
.

1 0
0 1

1 . . . 1 Ak−1

.

.

.
.
.
.

0 1
1 0

1 . . . 1 Ak−1

.

.

.
.
.
.

1 0



|Mk+1|=2|Mk|2

|Mk|=24·2k−1

(n− k − 2)-regular functions
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Symmetries

Tn is the group of shifts
gt ∈ Tn, gt : f(x)→ f(x+ t), |Tn| = 2n

JTn(f) = {t ∈ Fn
2 : f(x) + f(x+ t) = 0} is the inertia group of

the function f relative to the group Tn

Lemma. Any action of Tn does not change Sf
⇒ {fk}Tnk

⊆Mk.

|JTnk
(fk)| = 22

k+1−1

|{fk}Tnk
| = |Tnk

|
|JTnk

(fk)| = 24·2
k−1 = |Mk|

Thus, {fk}Tnk
= Mk
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Bound on rank via |Sf |

|Sf | = s (sparsity)

Rank of Sf is O (
√
s log2 s) (Sanyal 2014)

Address function Adds:

Addm(x1, . . . , xm, y0, . . . , y2m−1) = y(x1,...,xm)

Addm is plateaued, SAddm = {xy | |y| = 1}.
|SAddm | = s = 4m, rank of SAddm is 2m +m ∼

√
s.

For our example |Sf | = s = 4h, affine rank of Sf is
2h+1 − 2 ∼ 2

√
s.
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Open problems

To prove or to disprove that the function fk constructed above
is extremal:

fk
n⊕

i=1
xi has maximal possible number of essential variables

among (k + 2)-regular functions for fixed k;
fk has maximal possible number n of variables for fixed k
such that Bn[supp(f)] is connected (k + 2)-regular and
Bn[supp(f̄)] is connected (k + 2)-regular;
fk has maximal possible number of nonlinear variables for
(n− k − 3)-resilient functions;
fk has maximal possible affine rank among all (plateaued)
functions with |Sf | = 4k+1.
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