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We will consider a smooth oriented manifold
with a smooth action of a compact torus,
such that all fixed points are isolated.

Such manifolds naturally appear
in different areas of mathematics.

They are the key objects of toric geometry, toric topology,
and the theory of homogeneous spaces of compact Lie groups.
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The theory of Hirzebruch genera of manifolds
is a well-known area of algebraic topology.
It has important applications
in the theory of differential operators on manifolds,
mathematical physics and combinatorics.

In the case of manifolds with compact torus action
there is an equivariant Hirzebruch genus
and arises the famous rigidity problem for this genus.

In many cases this problem is equivalent to the problem
of fiberwise multiplicativity of Hirzebruch genera.
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The localization formulas for equivariant genus appear.
They give the value of this genus in terms of torus
representation in the tangent space at fixed points.

The rigidity conditions and localization formulas
lead to functional equations that characterize
the fundamental fiberwise multiplicative genera.

In the talk we will describe the general approach
to rigid Hirzebruch genera problem and demonstrate the results
for the homogeneous manifolds of compact Lie groups.
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The main construction

Let us consider

a set Λ = {Λi , i = 1, . . . ,m} of (k × n)-matrices Λi

with integer coefficients

and a map ε : [1,m]→ {−1, 1}.
Let A be a commutative associative ring over Q.

We associate to each series f (x) = x + a1x2 + a2x3 + . . . ∈ A[[x ]]
the characteristic function of the pair (Λ, ε):

L(Λ, ε; f )(t) =
m∑
i=1

ε(i)
n∏

j=1

1

f (〈Λj
i , t〉)

. (1)

Here t = (t1, . . . , tk), Λj
i , j = 1, . . . , n are k-dimensional column

vectors of Λi and 〈Λj
i , t〉 = Λj ,1

i t1 + . . .+ Λj ,k
i tk .
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Admissible pairs

Set
f (x) =

x

Q(x)
, Q(0) = 1.

We have:

L(Λ, ε; f )(t) =
n∑

i=1

ε(i)

 n∏
j=1

1

〈Λj
i , t〉

 n∏
j=1

Q
(
〈Λj

i , t〉
)
. (2)

The pair (Λ, ε) is called admissible if

L(Λ, ε; f )(t) ∈ A[[t]]

for any ring A and any series

f (x) = x + a1x2 + a2x3 + . . . ∈ A[[x ]].
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The universal series

It is sufficient to check that the pair (Λ, ε) is admissible for
the universal series

fu(x) = x +
∑
q>1

aqxq+1 ∈ A[[x ]],

where A =
∑
n>0
A−2n = Q[a1, . . . , aq, . . .], deg aq = −2q.

Set deg tl = 2 for l = 1 . . . , k . If the pair (Λ, ε) is admissible,
then

L(Λ, ε; fu)(t) =
∑
ω

Pωtω, (3)

where each ω = (i1, . . . , ik) is a set of non-negative integers,
tω = t i11 . . . t

ik
k , |ω| = i1 + . . .+ ik and Pω ∈ A−2(n+|ω|).

Note L(Λ, ε; fu)(0) = P(a1, . . . , an),
where P(·) = P∅(·), deg P∅ = −2n.
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Rigid pairs

The pair (Λ, ε) is called rigid for a family of series F if

L(Λ, ε; f )(t) ≡ L(Λ, ε; f )(0) = P(a1, . . . , an) ∈ A

for any series f ∈ F .

Problem

Find the solution of rigidity functional equation

L(Λ, ε; f )(t) ≡ C

where C is constant in t,
that is, for a given pair (Λ, ε), find the family of series F
and calculate the polynomial C = P(a1, . . . , an).
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Manifolds with torus action

Theorem

For any smooth oriented manifold M2n

with a smooth action of the compact torus T k such that
all the fixed points are isolated there is the correspondence

L : (M2n,T k)→ (Λ, ε).

Proof. Let x1, . . . , xm be the set of all fixed points.
Then in the tangent space τi ' R2n of the point xi
a representation of the torus T k is defined.

Given a basis in T k one can choose a set of weights

Λj
i = {Λj ,1

i , . . . ,Λj ,k
i }, j = 1, . . . , n.
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Manifolds with torus action

One can define the map

ε : [1,m]→ {−1, 1},

where ε(i) = 1,
if the orientation in τi , induced by the orientation
of the manifold M2n, coincides with the orientation in τi ,
defined by the set of weights Λj

i ,
and ε(i) = −1 otherwise.

Therefore we have the correspondence L.
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Normal complex T k-manifolds

Let (M2n,T k) be a smooth manifold M2n

with an action of a torus T k .

There is a linear representation of the torus T k in R2N ' CN

and an equivariant embedding M2n ⊂ CN .
Let νN(M2n) be the normal bundle of this embedding.

The pair (M2n,T k) is called normal complex T k -manifold
if there exists N such that νN(M2n) is a complex T k -bundle.

If (M2n,T k) is a normal complex T k -manifold,
then M2n is a stably-complex T k -manifold
and therefore it is orientable.
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Hirzebruch genus (complex case)

Let
f (x) = x +

∑
q>1

aqxq+1 ∈ A[[x ]], as before.

The series
n∏

i=1

ti
f (ti )

can be presented in the form Lf (σ1, ..., σn), where σk is
the k-th elementary symmetric polynomial of t1, ..., tn.

We have Lf (σ1, ..., σn) = 1−a1σ1+(a21−a2)σ21+(2a2−a21)σ2+. . .
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The Hirzebruch genus Lf of a stably complex manifold M2n

with tangent Chern classes ci = ci (τ(M2n))
and fundamental cycle 〈M2n〉 is defined by the formula

Lf (M2n) = (Lf (c1, ..., cn), 〈M2n〉) ∈ A−2n.

The universal series fu(x) determines the isomorphism

Lfu : ΩU ⊗Q→ Q[a1, . . . , aq, . . .],

where ΩU is the ring of cobordisms of stably-complex manifolds
and aq, q = 1, 2, . . . are the coefficients of f .

Any series f (x) ∈ A[[x ]] gives a ring homomorphism

Lf : ΩU → A.
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Equivariant genus

Let (M2n,T k) be a normal complex T k -manifold M2n

with an action of a torus T k .
Then for any series f (x) there is the equivariant genus

Lf (M2n,T k)(t) = Lf ([M2n]) +
∑
|ω|>0

Qωtω,

where Qω = Lf (B
2(n+|ω|)
ω ).

Here [M2n] ∈ Ω−2nU is the complex cobordism class of M2n

and B
2(n+|ω|)
ω ∈ Ω

−2(n+|ω|)
U ⊗Q for all ω.
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The construction of admissible pairs

From localization theorem for equivariant genus
(V. Buchstaber, T. Panov, N. Ray IMRN, 2010), we obtain

Corollary

Let (M2n,T k) be a normal complex T k -manifold
with isolated fixed points. Then the correspondence

L : (M2n,T k)→ (Λ, ε)

gives the admissible pair (Λ, ε) and

Lf (M2n,T k)(t) = L(L(M2n,T k), f )(t).

In particular, for every L(M2n,T k) the equation holds:
m∑
i=1

ε(i)
n∏

j=1

1

〈Λj
i , t〉
≡ 0.
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Complex and almost complex manifolds

A pair (M2n,T k) is called a complex T k -manifold,
if M2n is a complex manifold
with a holomorphic action of a torus T k .

A pair (M2n,T k) is called an almost complex T k -manifold,
if on the tangent bundle τ(M2n)
there exists a structure of a complex T k -bundle.

The structure of
a complex or almost complex T k -manifold (M2n,T k)
defines the structure of a normal complex manifold (M2n,T k)
and therefore an admissible pair (Λ, ε).

For each such pair ε(i) = 1, i = 1, . . . ,m.
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Complex projective spaces

CPn = {(z1 : . . . : zn+1); (z1, . . . , zn+1) ∈ Cn+1}

has the canonical structure of T n+1-complex manifold
with the fixed points ek = (δ1k , . . . , δ

n+1
k ), k = 1, . . . , n + 1,

δik = 0 if i 6= k and δkk = 1.

The weights at ek are the n-dimensional vectors
such that 〈Λk

j , t〉 = tj − tk , j 6= k , and the signs are ε(ek) ≡ 1.

For any series f (x) ∈ A[[x ]] such that f (0) = 0, f ′(0) = 1 we get

n+1∑
i=1

∏
j 6=i

1

f (tj − ti )
∈ A[[t1, . . . , tn+1]].
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Complex projective line

CP1 = {(z1 : z2); (z1, z2) ∈ C2}.

The action of T 2 on CP1: (z1 : z2)→ (t1z1 : t2z2)
has two fixed points (1 : 0) and (0 : 1).

Rigidity functional equation:

1

f (t2 − t1)
+

1

f (t1 − t2)
≡ C , where f (x) = x+. . . , C = −2a1.

The general analytic solution of this equation is

f (x) =
x

q(x2)− a1x
, where q(0) = 1.
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Hirzebruch L-genus — the signature of the manifold

Rigidity functional equation for CP2 is

1

f (t1 − t2)f (t1 − t3)
+

1

f (t2 − t1)f (t2 − t3)
+

1

f (t3 − t1)f (t3 − t2)
≡ C .

From this equation we get

C = 3(2a21 − a2), (2a21 − a2)(a31 − 2a1a2 + a3)2 = 0.

If f (x) is a solution of this equation and f (−x) = −f (x), then

f (x + y) =
f (x) + f (y)

1 + Cf (x)f (y)
,

that is f (x) = 1√
C

th(
√

C x).

This series determines the most famous Hirzebruch genus,
namely, the signature.
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Let the bundle CP(ξ)→ B
with fiber CP(2) be the projectivization
of a 3-dimensional complex vector bundle ξ → B.

A Hirzebruch genus Lf : ΩU → R is called CP(2)-multiplicative,
if we have Lf [CP(ξ)] = Lf [CP(2)]Lf [B].

If a genus Lf is CP(2)-multiplicative, then it is rigid on CP(2).

Definition

We will call special CP(2)-multiplicative genus
a CP(2)-multiplicative genus Lf

such that Lf [CP(2)] = 0.
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Theorem (V. Buchstaber, E. Netay 2014)

Let Lf be a CP(2)-multiplicative genus.
If Lf [CP(2)] 6= 0, then Lf is the two-parametric Todd genus, and

f (x) =
eαx − eβx

αeαx − βeβx
, (4)

If Lf [CP(2)] = 0, that is Lf is a special CP(2)-multiplicative
genus, then it is the two-parametric general elliptic genus and

f (x) = −
2℘(x) + a2

2

℘′(x)− a℘(x) + b − a3

4

. (5)

Here ℘ and ℘′ are Weierstrass functions of the elliptic curve
with parameters g2 = −1

4(8b− 3a3)a, g3 = 1
24(8b2− 12a3b + 3a6),

discriminant ∆ = −b3(3b − a3).
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In terms of coefficients of f (x) we have:

in the first case
2a1 = −(α + β), 3a2 = αβ + 2a21, a3 = 2a1a2 − a31,

in the second case
2a1 = −a, 2a2 = a2, 8a3 = 4b − 3a3.

Corollary

In the case a2 = 2a21, a3 = 3a31, we have the “intersection case”:

f (x) =
2

k

tg(y)

tg(y) +
√

3
, y =

√
3

2
kx . (6)
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Krichever genus

Consider the series

f (x) =
ea1x

Φ(x)
, (7)

where

Φ(x) = Φ(x ; g2, g3) =
σ(x + τ)

σ(x)σ(τ)
e−ζ(τ)x

is Baker-Akhiezer function of the elliptic curve with
Weierstrass parameters g2, g3.

Here σ(x) = σ(x ; g2, g3) and ζ(x) = ζ(x ; g2, g3)
are Weierstrass functions.
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Krichever genus

Definition

The Hirzebruch genus determined by the series (7)

f (x) =
ea1x

Φ(x)
,

is called Krichever genus.

For this genus the following important result holds:

Theorem (I. Krichever, 1990)

The equivariant genus Lf determined by the series (7)
is rigid on SU-manifolds with torus action.
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The Baker-Akhiezer function Φ(x) can be decomposed in series
whose coefficients are polynomials of ℘(τ), ℘′(τ) and g2.

Lemma

The equality (7) corresponds to the isomorphism

Q[a1, a2, a3, a4]→ Q[a1, ℘(τ), ℘′(τ), g2], (8)

where

a1 7→ a1, a2 7→
1

2
(℘(τ)+a21), a3 7→

1

6

(
℘′(τ) + 3a1℘(τ) + a31

)
,

a4 7→
1

24

(
9℘(τ)2 − 3

5
g2 + 4a1℘

′(τ) + 6a21℘(τ) + a41

)
.

Corollary

The coefficients ak , k > 4 of the series f (x) for Krichever genus
can be expressed using (8) as polynomials in a1, a2, a3, a4.
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Theorem (V. Buchstaber, E. Netay 2014)

The special CP(2)-multiplicative genus is a special
Krichever genus, and (5) can be written in the form

f (x) =
σ(x)σ(τ)

σ(x + τ)
exp

(
−a

2
x + ζ(τ)x

)
for the Baker-Akhiezer function with parameters

g2 =
3

4
(24b + a3)a, g3 = −1

8
(72b2 + 60a3b − a6),

∆ = −81b(3b − a3)3.

The parameter τ is determined by the relations

℘(τ, g2, g3) =
3

4
a2, ℘′(τ, g2, g3) = 3b − a3.
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Corollary

Each CP(2)-multiplicative genus is rigid
on manifolds with S1-equivariant SU-structure.

The parameters of the special CP(2)-multiplicative genus
form a manifold

K =
{

(a1, a2, a3, a4) : a2 = 2a21, 5a4 = −2a1(8a31 − 7a3)
}

in the space of parameters of Krichever genus.

Let us note that expression of the series f (x)
for the special CP(2)-multiplicative genus
in terms of Weierstrass ℘-function and Baker-Akhiezer function
correspond to different functions g2 and g3 in K:
in the first case

g2 = 4a1(2a3 − 3a31), g3 =
4

3
a23 − 4a61,

in the second case

g2 = −12a1(6a3 − 19a31), g3 = −4(9a23 − 84a31a3 + 169a61).
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Homogeneous spaces of compact Lie groups

Let G be a compact connected Lie group,
H its connected compact subgroup having the same rank as G
and T k their common maximal torus.

On a smooth oriented manifold M2n = G/H
the left action of the group G is defined.
This action induces a smooth action of T k

with isolated fixed points x1, . . . , xm,
where x1 is the image of identity e ∈ G
under the projection G→M2n,
xi = wix1, where wi are elements of the Weyl group W (G )
and m = |W (G )/W (H)|.
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Homogeneous spaces of compact Lie groups

In the correspondence

L : (M2n,T k)→ (Λ, ε)

we get
Λj
i = wiΛ

j
1,

where {Λj
1} is a set weights of the representation the torus T k

in the quotient of the Lie algebra G(G ) by Lie subalgebra G(H).
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Homogeneous spaces of compact Lie groups

In the case H2(M2n;Z) 6= 0
a homogeneous space M2n = G/H is a complex T k -manifold.

Examples:

Complex flag manifolds:

Fn = U(n)/T n.

Complex Grassmann manifolds:

Gn,q = U(n)/(U(q)× U(n − q)).

Generalized complex flag manifolds:

Gn,q1,...,ql = U(n)/(U(q1)× . . .× U(ql)),

where q1 + . . .+ ql = n.
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Homogeneous spaces of compact Lie groups

In the case H2(M2n;Z) = 0 a homogeneous space M2n = G/H,
where H is the centralizer of some element g ∈ G of odd order,
has a G -invariant almost complex structure.

Example.
The sphere S6 = G2/SU(3) has a G2-invariant almost complex
structure, because SU(3) is the centralizer of an element g ∈ G2

of order 3, which generates the center of G2.

This almost complex structure on S6 is not integrable.
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Almost complex T 2-manifold S6

The action of T 2 ⊂ G2 on S6

has two fixed points x1 and x2 with weights

x1: Λ1
1 = (1, 0), Λ2

1 = (0, 1), Λ3
1 = (−1,−1),

x2: Λ1
2 = (−1, 0), Λ2

2 = (0,−1), Λ3
2 = (1, 1).

Rigidity functional equation:

1

f (t1)f (t2)f (−t1 − t2)
+

1

f (−t1)f (−t2)f (t1 + t2)
≡ C .
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Almost complex T 2-manifold S6

Set t1 = x , t2 = y . The rigidity equation becomes

1

f (x)f (y)f (−x − y)
+

1

f (−x)f (−y)f (x + y)
= C . (9)

Set

b(x) = − f (x)

f (−x)
= 1 +

∑
k>1

bkxk .

We get the equation

b(x + y) = b(x)b(y)− Cf (x)f (y)f (x + y). (10)

For C = 0 we obtain b(x) = e−µx

and the function f (x) is characterized by the relation

f (−x) = −eµx f (x).

33/64



Almost complex T 2-manifold S6

Let C 6= 0. Using the operator

∂ =
∂

∂x
− ∂

∂y

from (10) we get

Cf (x + y) =
b′(x)b(y)− b(x)b′(y)

f ′(x)f (y)− f (x)f ′(y)
.

For y = 0 this equation becomes

b′(x) = b1b(x)− Cf (x)2,

therefore we get C = 1
2(b3

1 − b3).
From these relations we get

f (x + y) =
f (x)2b(y)− b(x)f (y)2

f (x)f ′(y)− f ′(x)f (y)
. (11)
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Almost complex T 2-manifold S6

From a theorem by V. Buchstaber, 1990, we obtain

Corollary

The general analytic solution of equation (11) is given by the
function

f (x) =
eλx

Φ(x)
,

where

Φ(x) =
σ(α− x)

σ(x)σ(α)
eζ(α)x

is the Baker-Akhiezer function.
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Hirzebruch genus (oriented case)

Let
f (x) = x +

∑
k>1

a2kx2k+1 ∈ A[[x ]].

The product of even series
n∏

i=1

ti
f (ti )

can be presented in the form Lf (p1, ..., pn), where pk is
the k-th elementary symmetric polynomial in t21 , ..., t

2
n .

We have Lf (p1, ..., pn) = 1−a2p1+(a22−a4)p2
1+(2a4−a22)p2+. . .

The Hirzebruch genus Lf of a oriented manifold M4n

with tangent Pontriagin classes

pk(τ(M4n)) = (−1)kc2k(τC(M4n))

and fundamental cycle 〈M4n〉 is defined by the formula

Lf (M4n) = (Lf (p1, ..., pn), 〈M4n〉) ∈ A−4n. 36/64



The construction of admissible pairs

From localization theorem for equivariant genus we obtain

Corollary

Let (M4n,T k) be an oriented T k–manifold M4n.
Then the correspondence

L : (M4n,T k)→ (Λ, ε)

gives the admissible pair (Λ, ε) and

Lf (M4n,T k) = L(L(M4n,T k), f ).
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Let (M4n,T k) be an oriented T k -manifold.
For any odd series f (x) = x +

∑
q>1 a2qt2q+1

is defined the equivariant genus

Lf (M4n,T k) = Lf [M4n] +
∑

Qωtω

where Qω = Lf (c
4(n+|ω|)
ω ).

Here [M4n] ∈ Ω−4nSO is oriented cobordism class of M4n

and c
4(n+|ω|)
ω ∈ Ω

−4(n+|ω|)
SO ⊗Q for all ω.

For the ring of oriented cobordisms ΩSO the epimorphism holds:

µSOU : Q[a1, . . . , aq, . . .] = ΩU⊗Q→ ΩSO⊗Q = Q[a2, . . . , a2q, . . .],

where µSOU (a2q) = a2q, µSOU (a2q+1) = 0.
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Quaternionic projective spaces

HPn = {(q1 : . . . : qn+1); (q1, . . . , qn+1) ∈ Hn+1}
where (q1, . . . , qn+1) = (q1q, . . . , qn+1q), q ∈ H\0.

The oriented manifold HPn

has the canonical structure of T n+1-manifold
with fixed points ek = (δ1k , . . . , δ

n+1
k ), k = 1, . . . , n + 1, where

(t1, . . . , tn+1)(q1, . . . , qn+1) = (t1q1, . . . , tn+1qn+1).

The weights at ek are the 2n-dimensional vectors
{(Λj ,+

k ,Λj ,−
k ), j 6= k} such that 〈Λj ,±

k , t〉 = tj ± tk .

For any odd series f (x) ∈ A[[x ]] we get

n+1∑
k=1

∏
j 6=k

1

f (tj + tk)f (tj − tk)
∈ A[[t21 , . . . , t

2
n+1]].

39/64



Quaternionic projective line

HP1 = {(q1 : q2); (q1, q2) ∈ H2}.

The action of T 2 on HP1

(q1 : q2)→ (t1q1 : t2q2)

has fixed points e1 = (1 : 0) and e2 = (0 : 1). The equivariant
genus is

Lf (HP1,T 2) =
1

f (t2 + t1)f (t2 − t1)
+

1

f (t1 + t2)f (t1 − t2)
.

In oriented cobordisms [HP1] = 0 the condition

Lf (HP1,T 2)(0) = Lf [HP1] = 0

is provided by the condition that f (x) is odd.
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Rigidity equation for HP2

For any odd series f (x) = x + . . . by setting t1 = x , t2 = y ,
t3 = z we have

1

f (y + x)f (y − x)f (z + x)f (z − x)
+

+
1

f (x + y)f (x − y)f (z + y)f (z − y)
+

+
1

f (x + z)f (x − z)f (y + z)f (y − z)
= C . (12)
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By setting z = 0 and using that f (x) is odd we get
the functional equation

f (x + y)f (x − y) =
f (x)2 − f (y)2

1− Cf (x)2f (y)2
. (13)

Theorem

The general analytic solution of (13) is the function satisfying
the differential equation

f ′(x)2 = 1 + 3a2f (x)2 − Cf (x)4

with initial conditions f (0) = 0, f ′(0) = 1, that is f (x) = sn(x)
is elliptic Jacobi sine.
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Proof.

Decomposing the left and right hand side of (13) as a series in y
and equating the coefficients at y2 we get the equation

(f ′)2 = 1 + ff ′′ − Cf 4. (14)

Using that f ′(x) is even and f ′(0) = 1 we can set

(f ′)2 = 1 +
∑

bk f 2k .

Hence ff ′′ =
∑

kbk f 2k . Now from (14) we immediately obtain
b1 = 3a2, b2 = C and bk = 0 for k > 2.
Therefore if f (x) satisfies (12),
then it’s necessary that f (x) = sn(x).
From the classical addition theorem for Jacobi elliptic sine
it follows that sn(x) satisfies (12).
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Ochanine genus

Definition

The Hirzebruch genus determined by the series f (x) = sn(x)
is called Ochanine genus.

Theorem (Ochanine, Bott – Taubes)

Ochanine genus is fiberwise multiplicative for bundles E → B
of oriented manifolds with fiber M being a spin-manifold,
that is w2(M) ≡ 0 where w2 is the second Stiefel–Whitney class
in ordinary cohomology.
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Let B be an oriented manifold
and HP(ξ)→ B be a bundle with fiber HP(2),
which is a quaternization of the vector bundle ξ → B.

The Hirzebruch genus Lf : ΩSO → R
is called HP(2)-multiplicative if

Lf [HP(ξ)] = Lf [HP(2)]Lf [B].
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From a theorem of V. Buchstaber, T. Panov, N. Ray we obtain:

Corollary

Each HP(2)-multiplicative genus is rigid on HP(2).

Theorem

The Hirzebruch genus Lf is fiberwise multiplicative
for bundles of oriented manifolds whose fibers are spin-manifolds
if and only if it is Ochanine genus.
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Addendum.

Flag manifolds U(n)/T n

Universal rigidity rings for flag manifolds

Fn = U(n)/T n

Using of divided difference operators
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Addendum: Flag manifolds U(n)/T n.

We consider U(n)-invariant complex structure on U(n)/T n.

Recall that the Weyl group WU(n) is the symmetric group Sn

and it permutes the coordinates x1, . . . , xn
on Lie algebra tn for T n.

The canonical action of the torus T n on this manifold has

‖WU(n)‖ = χ(U(n)/T n) = n!

fixed points and its weights at identity point
are given by the roots of U(n).
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Addendum: Universal rigidity rings for flag manifolds
Fn = U(n)/T n.

Let
∆n =

∏
16i<j6n

(xi − xj).

Theorem

The rigidity functional equation for flag manifolds Fn is

C ∆n =
∑
σ∈Sn

(signσ)σ
∏

16i<j6n

Q(xi − xj), (15)

where Q(t) = 1 +
∑
i>1

bi t
i and C is a homogeneous degree −2n

polynomial in b1, . . . , bn, deg bk = −2k.

Here signσ is the sign of the permutation σ.
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Addendum: F3 = U(3)/T 3

∆3 = (x1 − x2)(x1 − x3)(x2 − x3).

C = 6(b3
1 + b1b2 − b3).

C ∆3 =
∑
σ∈S3

(signσ)σ
(

Q(x1 − x2)Q(x1 − x3)Q(x2 − x3)
)
.

The first generators of the rigidity ideal are

5b5 = b1b2
2 + 6b2

1b3 − b2b3 + 5b1b4,

7b7 = 3b1b2
3 + 2b1b2b4 + b3b4 + 6b2

1b5 − 3b2b5 + 7b1b6.
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Addendum: Using of divided difference operators.

Consider the ring of the symmetric polynomials

Symn ⊂ Z[x1, . . . , xn].

There is a linear operator

L : Z[x1, . . . , xn] −→ Symn : Lxξ =
1

∆n

∑
σ∈Sn

(signσ)σxξ ,

where ξ = (j1, . . . , jn) and xξ = x j1
1 · · · x

jn
n .
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It follows from the definition of Schur polynomials

Shλ(x1, . . . , xn), where λ = (λ1 > λ2 > · · · > λn > 0)

that
Lxλ+δ = Shλ(x1, . . . , xn),

where δ = (n − 1, n − 2, . . . , 1, 0) and Lxδ = 1.

Here
xδ = xn−1

1 xn−2
2 . . . xn−1.

For n = 3
xδ = x2

1x2.
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Moreover, the operator L have the following properties:

Lxξ = 0, if j1 > j2 > · · · > jn > 0 and ξ 6= λ+ δ
for some λ = (λ1 > λ2 > · · · > λn > 0);

Let ξ = (j1, . . . , jn) and σ ∈ Sn such that σξ = ξ′,
where ξ′ = (j ′1, . . . , j

′
n), j ′1 > . . . > j ′n, then

Lxξ = (signσ)Lxξ
′
;

L is a homomorphism of Symn-modules.

We have ∏
16i<j6n

Q(xi − xj) = 1 +
∑
|ξ|>0

Pξ(b)xξ.

Here |ξ| = ξ1 + . . .+ ξn, and b = (b1, . . . , bk , . . .).

53/64



Let us introduce the action of Sn on polynomials Pξ(b) by

1 +
∑
|ξ|>0

(σPξ(b))xξ = σ−1
∏

16i<j6n

Q(xi − xj),

where σ ∈ Sn on the right acts
by the permutation of variables x1, . . . , xn.

Directly from the definition we have

1 +
∑
|ξ|>0

(σPξ(b))xξ = 1 +
∑
|ξ|>0

Pξ(b)(σ−1xξ).

Therefore σPξ = Pσξ.
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Corollary

The operator

L∗ =
∑
σ∈Sn

(signσ)σ

acts on polynomials Pξ(b).

The formula holds

C =
∑
|λ|>0

L∗Pλ+δ(b) Shλ(x),

where
δ = (n − 1, n − 2, . . . , 1, 0), λ = (λ1 > λ2 > . . . > λn > 0).

Using that the Schur polynomials Shλ(x)
form an additive basis in the ring of symmetric polynomials
we obtain the following result.
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Using the action of Sn on polynomials Pξ(·)

Theorem

For standard structure on complex flag manifolds Fn

and the canonical admissible pair (Λ, ε) we have

ε ≡ 1;

C = L∗Pδ(b);

Generators of rigidity ideal are L∗Pλ+δ(b) for all |λ| > 0.

Remark

Polynomials Pσδ in the formula for C
appear to be polynomials only in variables b1, . . . , b2n−3.

56/64



F3 = U(3)/T 3

The generator

b1b2
2 + 6b2

1b3 − b2b3 + 5b1b4 − 5b5

of rigidity ideal for F3 = U(3)/T 3

is the coefficient at

2
(
Sh(2,0,0)−2 Sh(1,1,0)

)
.
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Addendum.

Simple polytopes.

Moment-angle manifolds ZP .

Quasitoric manifolds M(P ,ΛP).

Admissible pairs for quasitoric manifolds.

2-truncated cubes.
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Addendum: Simple polytopes

A convex n-polytope P ⊂ Rn is called simple
if in every vertex exactly n facets converge.

Let P = {x ∈ Rn : 〈ai , xi 〉+ bi > 0, 1 6 i 6 m}.

It is assumed that none of the inequalities can be removed.

Let us form a (n ×m)-matrix AP ,
whose columns are the vectors ai in the standard basis.
We identify the polytope P with the intersection
of the n-dimensional plane

{y ∈ Rm : y = A?Px + b}

and the positive cone in Rm.

Here and below ? is the symbol of transposition.
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Addendum: Moment-angle manifolds ZP

The manifold ZP with the canonical action of the torus Tm

is defined by the commutative diagram

ZP

��

// Cm

ρ

��
P // Rm

>

It is called the moment-angle manifold.

Here ρ : Cm → Rm
> : ρ(z) = (|z1|2, . . . , |zm|2).
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Addendum: Quasitoric manifolds M(P ,ΛP)

Let F1, . . . ,Fm be the set of facets of a simple polytope P.
The (n ×m)-matrix ΛP with integer coefficients
defines the characteristic mapping

λ : {F1, . . . ,Fm} → Zn; λ(Fj) = λj

if for any vertex v = Fj1 ∩ · · · ∩ Fjn

the columns λj1 , . . . , λjn form a basis in Zn.

The matrix ΛP defines an epimorphism λ : Tm → Tn.

The group K (ΛP) = ker λ of rank (m − n) acts freely on ZP .

The orbit space M2n = Zn/K (ΛP)
is a smooth manifold called quasitoric.

An n-dimensional torus T n = Tm/K (ΛP) acts on M2n with
isolated fixed points, which are numbered by vertices of the
polytope P.
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Addendum: Admissible pairs for quasitoric manifolds

Each quasitoric manifold M(P,ΛP)
is a normal complex T n-manifold, where n = dim P.

Let v = Fj1 ∩ · · · ∩ Fjn be a vertex.
For a (n × n) matrix λv with columns {λjq , q = 1, . . . , n}
one can define a matrix with integer coefficients

Λv = (λ?v )−1.

Each quasitoric manifold corresponds to an admissible pair
(Λ, ε), where Λ = {Λv}, and

ε(v) = sign(det(λj1 , . . . , λjn) det(aj1 , . . . , ajn)).
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Addendum: 2-truncated cubes

A simple polytope is called 2-truncated cube if it is obtained
by a sequence of truncations of the cube facets of codimension
2. The sequence of facets truncations, giving 2-truncated cube,
is called its framing.

Let P be a 2-truncated cube with the (n ×m)-matrix ΛP .
The truncation of the facet Gj1,j2 = Fj1 ∩ Fj2 6= ∅
gives the polytope Q with (n × (m + 1))-matrix ΛQ ,
which is obtained from ΛP

by adding a column λj1 + λj2 on the (m + 1)-th place.

The cube I n has a canonical (n × 2n)-matrix ΛI n = (En,−En),
where En is the identity (n × n)-matrix.
Each 2-truncated cube corresponds to a canonical matrix ΛP ,
which is obtained from ΛI n by the operations described above.
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Addendum: 2-truncated cubes

One of the central results of the theory of 2-truncated cubes
is the proof that
flag nestohedra, graph-associahedra, graph-cubahedra,
and other polytopes important in various fields of research
are 2-truncated cubes.

Thus, we conclude that each of these classes of polyhedra
has a canonical matrix ΛP , and therefore, for each such polytope
we obtain an admissible pair (Λ, ε), where ε(i) = 1 for all i .
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