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FUNK–MINKOWSKI TYPE TRANSFORMS OF VECTOR FIELDS ON THE
SPHERE S2

SERGEY KAZANTSEV

Let S2 be the unit sphere in R3, S2 = {ξ ∈ R3 : |ξ| = 1}, where | · | denotes the Euclidean
norm. Throughout the paper we adopt the convention to denote in bold type the vectors in R3,
and in simple type the scalars in R. By the greek letters θ, η, ξ and so on we denote the units
vectors on the sphere S2. The Funk–Minkowski transform F associates a function u or vector
field f on the sphere S2 with its mean values (integrals) along all great circles of the sphere,

{F u
f
}(η) ≡ Fη

u
f

=
1

2π

∫
S2

u(θ)
f(θ)

δ(η � θ) dθ,(1)

where δ is the Dirac delta function and the dθ is the surface measure on S2 with normalization∫
S2 dθ = 4π. In the second case the Funk–Minkowski transform F is applied to vector function
f by componentwise.

The spherical convolution operator S of Hilbert type is defined by,

{S u
f
}(θ) ≡ Sθ

u
f

=
p.v.

4π

∫
S2

u(η)
f(η)

dη

θ � η
, θ ∈ S2.

In addition, we also consider the following Funk-Minkowski type transforms of vector fields on
the the sphere

{F (τ )f}(η) ≡ F (τ )
η f =

η �
2π

∫
S2
θ × f(θ)δ(η � θ) dθ,(2)

{F (β)f}(η) ≡ F (β)
η f =

η �
2π

∫
S2
f(θ)δ(η � θ) dθ.(3)

The transform (2) will be an analog of the longitudinal ray transform of vector fields in

the Euclidean case. In the physical sense, the quantity F (τ )
η f is equal to the circulation (work)

of vector field f along the closed contour (big circle) θ � η = 0 on the sphere.
The tangential gradient or the surface gradient, denoted by ∇ ≡ ∇ξ and the tangential

rotated gradient (the surface curl-gradient), denoted by ∇⊥ ≡ ∇⊥
ξ , are defined accordingly as

∇ξu =
∂u

∂θ
e1(ξ) +

1

sin θ

∂u

∂ϕ
e2(ξ), ∇⊥

ξ u = ξ ×∇ξu,(4)

where {e1, e2} is the orthonormal basis in the tangent plane ξ⊥ = {x ∈ R3 : x � ξ = 0},

e1(ξ) =
∂ξ

∂θ
= (cos θ cosϕ, cos θ sinϕ,− sin θ), e2(ξ) =

1

sin θ

∂ξ

∂ϕ
= (− sinϕ, cosϕ, 0),

ξ = ξ(θ, ϕ) = i sin θ cosϕ+ j sin θ sinϕ+ k cos θ = (sin θ cosϕ, sin θ sinϕ, cos θ).

The surface divergence divξ of vector-valued function v(ξ) = v1e1(ξ) + v2e2(ξ) + v3ξ on the
sphere S2 is written as,

divξv =
1

sin θ

(
∂

∂θ
(v1 sin θ) +

∂

∂ϕ
v2
)

+ 2v3 .(5)

Finally, we define the Laplace–Beltrami operator ∆ ≡ ∆ξ as ∆ξu(ξ) = divξ∇ξu(ξ) .
82
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Theorem 1. For any function f(θ) ∈ H1(S2) the following identity takes place

f(θ) =
1

4π

∫
S2
{Ff}(η)dη︸ ︷︷ ︸
=f00

+
p.v.

4π

∫
S2

(η + θ) �
{[
F ,∇

]
f
}

(η)

η � θ
dη = f00 + Sθ(η + θ) �

[
F ,∇

]
η
f.

(6)

Here operators F and ∇ are the Funk–Minkowski transform (1 ) and the surface gradient
(4), respectively. Through the square brackets [., .] we, as usual, denoted the commutator[
F ,∇

]
f = F∇f −∇Ff .

We see that by using formula (6) the unknown function f completely reconstruct, if two
Funk–Minkowski transforms, Ff and F∇f , are known.

Another result of this article is related to the problem of Helmholtz–Hodge decomposition for
tangent vector field on the sphere S2. The Helmholtz–Hodge decomposition says that we can
write any vector field tangent to the surface of the sphere as the sum of a curl-free component
and a divergence-free component

f(θ) = ∇θu(θ) +∇⊥
θ v(θ).(7)

Here ∇θu is called also as inrrotational, poloidal, electric or potential field and ∇⊥
θ v is called

as incompressible, toroidal, magnetic or stream vector field. Scalar functions u and v are called
velocity potential and stream functions, respectively.

In the next theorem we show that decomposition (7) is obtained by use of Funk–Minkowski-
transform F and spherical convolution transform S.

Theorem 2. Any vector field f ∈ L2,tan(S2) that is tangent to the sphere can be uniquely
decomposed into a sum (7) of a surface curl-free component and a surface divergence-free
component with scalar valued functions u, v ∈ H1(S2)/C. Functions u and v are velocity
potential and stream functions that are calculated unique up to a constant by the formulas

u(θ) =
[
S,η � ,F

]
θ
f =

{
Sη � Ff

}
(θ)−

{
Fη � Sf

}
(θ) = Sθη � Fηf −Fθη � Sηf ,

v(θ) = θ �
[
S,η×,F

]
θ
f = θ �

{
Sη ×Ff

}
(θ)− θ �

{
Fη × Sf

}
(θ) = θ � Sθη ×Fηf − θ � Fθη × Sηf ,

where through [A,B, C] we denote the generalized commutator, [A,B, C] = ABC − CBA.

Theorem 3. For any functions u, v ∈ H1(S2) the following identities take place

∇u(θ) =
∇
4π

∫
S2

{F (β)∇u}(η)

θ � η
dη

︸ ︷︷ ︸
even part

+
1

4π

∫
S2

η∆{Fu}(η)

θ � η
dη

︸ ︷︷ ︸
odd part

,(8)

∇⊥v(θ) =− ∇
⊥
θ

4π

∫
S2

{F (τ )∇⊥v}(η)

θ � η
dη

︸ ︷︷ ︸
odd part

+
θ×
4π

∫
S2

η∆{Fv}(η)

θ � η
dη

︸ ︷︷ ︸
even part

.(9)

The analytic inversion formulas for operators F (τ ) and F (β) follow from the Theorem 3. Let
f(θ) = ∇θu(θ) + ∇⊥

θ v(θ) is an odd vector field, f(−η) = −f(η). It is obvious that for even
vector fields f(−η) = f(η) the F (τ )f will be zero. We also know that F (τ )∇u = 0, so the
original vector field is not completely determined by its transformation F (τ ). We see that the
first term in the formula (9) gives the inversion formula. So we define only the stream function
vodd and, accordingly, only the solenoidal part ∇⊥vodd(θ) of the vector field f .
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ON REALIZABILITY OF GAUSS DIAGRAMS AND CONSTRUCTION OF
MEANDERS

VIKTOR LOPATKIN (JOINT WORK WITH ANDREY GRINBLAT)

The problem of which Gauss diagram can be realized by knots is an old one [1] and has been
solved in several ways [3],[4],[5]. However all these ways are indirect; they rest upon deep and
nontrivial auxiliary construction. There is a natural question: whether one can arrive at these
conditions in a more direct and natural fashion?

In this talk, we present a direct approach to this problem. We show that the needed conditions
for realizability of a Gauss diagram can be interpreted as follows “the number of exits = the
number of entrances” and the sufficient condition is based on Jordan curve Theorem.

We believe that the conditions for realizability of a Gauss diagram (by some plane curve)
should be obtained in a natural manner; they should be deduced from an intrinsic structure of
the curve.

In this talk, we suggest an approach, which satisfies the above principle. We use the fact
that every Gauss diagram G defines a (virtual) plane curve C (G) (see [2, Theorem 1.A]), and
the following simple ideas:

(1) For every chord of a Gauss diagram G, we can associate a closed path along the curve
C (G).

(2) For every two non-intersecting chords of a Gauss diagram G, we can associate two
closed paths along the curve C (G) such that every chord crosses both of those chords
correspondences to the point of intersection of the paths.

(3) If a Gauss diagram G is realizable (say by a plane curve C (G)), then for every closed
path (say) P along C (G) we can associate a coloring another part of C (G) into two col-
ors (roughly speaking we get “inner” and “outer” sides of P cf. Jordan curve Theorem).
If a Gauss diagram is not realizable then ([2, Theorem 1.A]) it defines a virtual plane
curve C (G). We shall show that there exists a closed path along C (G) for which we
cannot associate a well-defined coloring of C (G), i.e., C (G) contains a path is colored
into two colors.

Using these ideas we solve the problem of which Gauss diagram can be realized by curves. We
then give a matrix approach of realization of Gauss diagrams and then we present an algorithm
to construct meanders
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E-mail address: wickktor@gmail.com

84



FROM HARMONIC MAPPINGS TO RICCI SOLITONS BY
INFINITESIMAL HARMONIC TRANSFORMATIONS

SERGEY STEPANOV

The purpose of the present report is the study of certain connections between the theory of
infinitesimal harmonic transformations (see [1]) and the well known theory of Ricci solitons
(see, for example, [2]). But we will begin our report with considering a new point of view on
classical results of the global geometry of harmonic mappings (see [3]). The Bochner technique
and its generalized version will help us to relate these various research topics (see [4]).

The report is organized as follows. In the first section of the report, we give brief survey of
basic facts of the geometry ”in the large” of harmonic mappings between Riemannian manifolds.
We shall prove that the classical theorems on harmonic mappings are consequences of well-
known assertions on subharmonic functions. Results of the second section of our paper with
the title ”Infinitesimal harmonic transformations” are obtained as analogs of results of the first
section of the report. In turn, the results of the third section which has the title ”Ricci solitons”
are applications of the results of the second section of our report.

Theorems and corollaries of this report complement our results from [5] and [6].
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ON GEOMETRY OF GROMOV–HAUSDORFF SPACE

ALEXEY A. TUZHILIN

The Gromov–Hausdorff (GH-) distance between two metric spaces X and Y is a measure of
difference between these spaces. To be more precise, let us isometrically embed X and Y into
other metric spaces Z, in all possible ways, and calculate the least possible Hausdorff distance
between the images. The resulting value is called the GH-distance between X and Y [1]. There
are various beautiful applications of this notion like Gromov’s theorem on groups of polynomial
growth [2] and Gromov’s compactness theorem [3, 4].

The most common use of the distance is related to description of the corresponding con-
vergence. In the present talk we shall speak about another aspect. Namely, we discuss the
geometry and topology of the first natural space endowed with the GH-distance, namely, the
space M of isometry classes of compact metric spaces. It is well-know that GH-distance on M
is a metric, and M with this metric is usually called the Gromov–Hausdorff space. We shall
discuss the both classical and recent results devoted to M, in particular, its local and global
symmetries. For more details see [5]–[15].
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