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Theorem 1 [1]–[2]. Let ψ ∈ W n,1(Rn). Then
(i) for every ε > 0 there exists δ > 0 such that for any set U ⊂ Rn with H1

∞(U) < δ the
inequality H1(ψ(U)) < ε holds;

(ii) H1({ψ(x) : x ∈ Rn & ∇ψ(x) = 0}) = 0.

Here we denote by H1 the one-dimensional Hausdorff measure, i.e., H1(F ) = lim
t→0+

H1
t (F ),

where H1
t (F ) = inf{

∞∑
i=1

diamFi : diamFi ≤ t, F ⊂
∞⋃
i=1

Fi}.

Corollary 2 [1]–[2]. Let ψ ∈ W n,1(Rn). Then for H1–almost all y ∈ ψ(Rn) ⊂ R the
preimage ψ−1(y) is a finite disjoint family of C1–smooth (n−1)-dimensional compact manifolds
Sj, j = 1, 2, . . . , N(y).

Now consider the Euler system

(1)

{ (
w · ∇

)
w +∇p = 0,

divw = 0.

Let Ω ⊂ R2 be a bounded domain with Lipschitz boundary. Assume that w = (w1, w2) ∈
W 1,2(Ω,R2) and p ∈ W 1,s(Ω), s ∈ [1, 2), satisfy the Euler equations (1) for almost all x ∈ Ω
and let

∫
Γi
w · n dS = 0, i = 1, 2, . . . , N , where Γi are connected components of the boundary

∂Ω. Then there exists a stream function ψ ∈ W 2,2(Ω) such that ∇ψ = (−w2, w1) (note that by

Sobolev Embedding Theorem ψ is continuous in Ω) . Denote by Φ = p +
|w|2

2
the total head

pressure corresponding to the solution (w, p).

Theorem 3 [3] (Bernoulli Law for Sobolev solutions). Under above conditions, for
any connected set K ⊂ Ω such that ψ

∣∣
K

= const the assertion

∃C = C(K) Φ(x) = C for H1-almost all x ∈ K

holds.

Using Theorem 3 we prove the existence of the solutions to steady Navier–Stokes equations
for some plane cases (see [4]) and for the spatial case when the flow has an axis of symmetry
(see [5]).
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