Let \overline{G} be a simple connected linear algebraic group over an algebraically closed field $\overline{\mathbb{F}}_p$ of positive characteristic p and σ a Steinberg endomorphism. There is a σ -invariant maximal torus \overline{T} of \overline{G} and all maximal tori are conjugate to \overline{T} in \overline{G} . Moreover, the quotient $N_{\overline{G}}(\overline{T})/\overline{T}$ is isomorphic to the Weyl group of \overline{G} .

Problem 1. Describe groups \overline{G} , in which $N_{\overline{G}}(\overline{T})$ splits over \overline{T} .

A similar question arises in finite groups of Lie type. Namely, let $T = \overline{T} \cap G$ be a maximal torus of G, $N = N_{\overline{G}}(\overline{T}) \cap G$ an algebraic normalizer. Notice that $N \leq N_G(T)$, but the equality is not true in general.

Problem 2. Describe groups G and their tori T, in which N splits over T.

We obtain answers to these problems for symplectic groups.