Primitive and measure-preserving system of elements on the varieties of metabelian and metabelian profinite groups

E.I.Timoshenko¹

Consider an ordered set (system) of elements $\{v_1, \ldots, v_l\}$, $1 \leq l \leq r$, in the free group F_r of rank r. Let G be a finite group. Define the verbal mapping $\varphi_{\{v_1,\ldots,v_l\}}$ from G^r into G^l by assigning to each $\overline{g} = (g_1, \ldots, g_n) \in G^r$ the element $(v_1(g_1, \ldots, g_r), \ldots, v_l(g_1, \ldots, g_r))$ in G^l . A system of elements $\{v_1, \ldots, v_l\}$ preserves measure on G if every $\overline{g} \in G^l$ appears as an image under $\varphi_{\{v_1,\ldots,v_l\}}$ with probability $|G|^{-l}$. A system of elements $\{v_1, \ldots, v_l\}$, $1 \leq l \leq r$, that preserves measure on every finite group G is called measure-preserving.

A system of elements $\{v_1, \ldots, v_l\}$, $1 \leq l \leq r$, in F_r is called *primitive* if it can be complemented to a basis for F_r .

The following conjecture by several authors about the connection between primitive elements and measure-preserving elements was formulated:

Conjecture 1. A system of elements $\{v_1, \ldots, v_l\}$, $1 \le l \le r$, in a free group F_r is primitive if and only if the system preserves measure.

The conjecture was confirmed for $l \ge r - 1$ and late, for l = 1.

Suppose that as finite groups G we consider only the groups in some variety \mathfrak{M} . Let $V = V(\mathfrak{M})$ be the verbal subgroup in F_r corresponding to this variety. As $\{v_1, \ldots, v_l\}$ in the definition of systems of measure-preserving elements, we may consider elements in the free group $F_r(\mathfrak{M}) = F_r/V$ of \mathfrak{M} .

Replacing in the definition of systems of elements an arbitrary finite group G with an arbitrary finite group in \mathfrak{M} , and a free group F_r , with a relatively free group $F_r(\mathfrak{M})$, we arrive at the notation of systems of elements in $F_r(\mathfrak{M})$ that preserve measure on \mathfrak{M} .

By analogy with the definition of system of primitive elements in F_r , we can define primitive systems of elements in $F_r(\mathfrak{M})$ as system that can be included in some basis of $F_r(\mathfrak{M})$.

The above-formulated conjecture can be expressed for a group variety \mathfrak{M} :

Conjecture 2. A system of elements $\{v_1, \ldots, v_l\}$, $1 \leq l \leq r$, in the free group $F_r(\mathfrak{M})$ is primitive if and only if the system preserves measure on \mathfrak{M} .

We use the primitivity criterions for varieties of metabelian groups for proof the next theorems.

THEOREM 1. Let S be a free metabelian group of rank $r \ge 2$. An element v preserves measure on the variety \mathfrak{A}^2 of all metabelian groups if and only if v is primitive.

THEOREM 2. Let S be a free metabelian group of rank $r \ge 2$. A system of elements $\{v_1, \ldots, v_r\}$ preserve measure on the variety \mathfrak{A}^2 of all metabelian groups if and only if they form a basis for S.

THEOREM 3. A system of elements $\{v_1, \ldots, v_l\}, 1 \leq l \leq r$, in a free profinite \mathfrak{A}^2 - group \widehat{S}_r is primitive if and only if this system preserves measure on the variety of profinite \mathfrak{A}^2 - groups.

THEOREM 4. Suppose that v belongs to a free metabelian group S_r and \widehat{S}_r is the profinite completion of S_r . The element v is primitive in S_r if and only if v is primitive in \widehat{S}_r .

THEOREM 5. Let elements $\{v_1, \ldots, v_r\}$ be chosen in a free metabelian group S_r . They constitute a basis for S_r if and only if they are a basis for profinite completion \widehat{S}_r of S_r .

¹The author was supported by the Russian Foundation for Basic Research (Grant 12-01-00084) and the Ministry for Education and Science of the Russian Federation (Grant $\mathbb{N}14.B37.21.0359$)