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Let G be a finite group, π(G) be the set of all prime divisors of its order,
ω(G) be the spectrum of G, i.e. the set of its element orders. The set ω(G)
defines a graph with the following relation of adjacency: different vertices r
and s from π(G) is joined by an edge if and only if rs ∈ ω(G). This graph
is called the Gruenberg-Kegel graph or the prime graph of G and denotes by
GK(G).

In [1] A.V. Vasil’ev posed the problem 16.26:
Does there exist a positive integer k such that there no k pairwise nonisomorphic

finite nonabelian simple groups with the same graph of primes? Conjecture:
k = 5.

It is easy to see that there exist four pairwise nonisomorphic finite nonabelian
simple groups with the same prime graph, namely: J2, A9, C3(2), D4(2).

In [2] it is investigated the case when the alternating group An for n ≥ 5
and a finite simple group have the same prime graph.

In the present abstract we consider two finite simple groups of Lie type
over fields of different characteristics p1 и p2. Using information about prime
graphs of finite simple groups from [3]–[6], and orders of groups of Lie type,
which can be found, for example, in [7], we obtain the following result.

Proposition 1. Let Gi = Ani−1(qi), ni ≥ 7, ni is odd, qi is a power of an
odd prime pi for i ∈ {1, 2}, p2 ̸= p1 and GK(G1) = GK(G2). Then n1 = n2

and the following condition holds:
either pi is a primitive prime divisor of qj3 − 1, or npi = (qj − 1)pi and pi

is a primitive prime divisor of qj − 1 for {i, j} = {1, 2}.
Proposition 2. Let G1 = An1−1(q1), n1 ≥ 7, n1 is odd, G2 = Bn2−1(q2),

n2 ≡ 0, 1 (mod 4), n1 ≥ 8, qi is a power of an odd prime pi for i ∈ {1, 2},
pi are primes, p2 ̸= p1 and GK(G1) = GK(G2). Then n1 = 3n2/2 + 1 or
n1 = 3n2/2 + 3/2 and the following conditions hold:

(1) n1 ≡ 4, 5, 9 (mod 12);
(2) p is a primitive prime divisor of q61 − 1;
(3) p1 is a primitive prime divisor of qj − 1, j ∈ {1, 2, 3}.
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