ON THE NONABELIAN COMPOSITION FACTORS OF A FINITE GROUP THAT IS PRIME SPECTRUM MINIMAL

N. V. MASLOVA, D. O. REVIN

We consider finite groups only.

Let G be a finite group. The set $\pi(G)$ of all prime divisors of the number |G| is called the *prime spectrum* of G. A finite group G is *prime spectrum minimal* if $\pi(H) \neq \pi(G)$ for every proper subgroup H of G.

A subgroup H of a group G is called a *Hall subgroup* if (|H|, |G : H|) = 1. The class of finite groups in which all maximal subgroups are Hall is a proper subclass of the class of finite prime spectrum minimal groups.

P. Shumyatsky has written down to "Kourovka notebook" [1] (problem 17.125) the following

Conjecture 1. In any finite group G, there is a pair a, b of it's conjugate elements such that $\pi(G) = \pi(\langle a, b \rangle)$.

It is easy to prove, the Shumyatsky conjecture is equivalent to the following

Conjecture 2. Every prime spectrum minimal group is generated by a pair of conjugate elements.

In [2] we have proved, any finite group with Hall maximal subgroups is generated by a pair of conjugate elements. Thus we have obtained the partially solution of Problem 17.125 from "Kourovka notebook". In our proof we used the description of nonabelian composition factors of a finite group with Hall maximal subgroups [3]. Thus it is interesting the following

Problem. What are nonabelian composition factors of finite groups that are prime spectrum minimal?

The main result of this work is the following

Theorem. Let $S = A_n$ where $n \ge 5$. Then the following conditions hold:

(i) S is not isomorphic to a composition factor of a prime spectrum minimal group if n is not a prime;

(ii) S is a prime spectrum minimal group if n is a prime.

Following [4] let us define c(G) to be the least integer n such that there exist proper subgroups H_1, \ldots, H_n such that $\pi(G) = \pi(H_1) \cup \ldots \cup \pi(H_n)$.

In [4] it was proofed, $c(A_n) \leq 2$ for each n.

Using main theorem of this work we obtain

Corollary. Let $S = A_n$ where $n \ge 5$. Then the following conditions hold: (i) c(S) = 1 if n is not a prime; (ii) c(S) = 2 if n is a prime. Acknowledgement. The research was supported by The work is supported by RFBR (projects 13-01-00469 and 13-01-00505), by and the Program of the Joint Investigations of the Ural Division of the Russian Academy of Sciences with Siberian Division of the Russian Academy of Sciences (project 12--1-10018) and with Belorussian National Academy of Sciences (project 12-C-1-1009), by the grant of the President of Russian Federation for young scientists (project MK-3395.2012.1) and by a grant from the IMM of UD RAS for young scientists in 2013.

References

- The Kourovka notebook. Unsolved problems in group theory. Edited by V. D. Mazurov and E. I. Khukhro. 17-th. ed., Russian Academy of Sciences Siberian Division, Institute of Mathematics, Novosibirsk, 2010.
- [2] Maslova N. V., Revin D. O. Generation of a finite group with Hall maximal subgroups by a pair of conjugate elements // Trudy Inst. Mat. i Mekh. UrO RAN, 2013. V. 19, no. 3, to appear (in Russian).
- [3] Maslova N. V. Nonabelian composition factors of a finite group whose all maximal subgroups are Hall. Siberian Math. J. 2012. V. 53, no. 5. P. 853-861.
- [4] Belonogov V. A. On sets of subgroups of a finite simple group, which control its the prime spectrum // Trudy Inst. Mat. i Mekh. UrO RAN, 2013. V. 19, no. 3, to appear (in Russian).

N. V. MASLOVA, IMM UB RAS, EKATERINBURG *E-mail address*: butterson@mail.ru

D. O. REVIN, IM SD RAS, NOVOSIBIRSK *E-mail address:* danila.revin@gmail.com