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One of the results in extremal combinatorics which has been proved and extended in many

ways is the Erdös-Ko-Rado theorem [3]. A k-set system is a collection of subsets of {1, 2, ..., n}

of size k. A k-set system is intersecting if its elements are pairwise non-disjoint.

Theorem 1. (Erdös, Ko and Rado [3]) Let k and n be positive integers such that n ≥ 2k.

(1) If F is an intersecting k-set system on an n-set, then |F| ≤
(

n − 1

k − 1

)
.

(2) If n > 2k, then F meets this bound if and only if F is the collection of all k-subsets

containing a fixed element i ∈ {1, ..., n}.

Erdös-Ko-Rado theorem has been extended in many ways. In [6], Hsieh investigated the

analogous problem for finite vector spaces. Let GF (q) denote a finite field with q elements.

Theorem 2. (Hsieh [6]) Let F be a family of k-dimensional subspaces of an n-dimensional

vector space V over GF (q) such that the members of F intersect pairwise non-trivially.

(1) If n ≥ 2k, then |F| ≤
[

n − 1

k − 1

]
q
, where the Gaussian coefficient

[
n − 1

k − 1

]
q
denotes the

number of k-dimensional subspaces of V containing a specific 1-dimensional subspace of

V .

(2) If n > 2k, then F meets this bound if and only if F is a family of k-dimensional subspaces

of V containing a specific 1-dimensional subspace of V (see [6, Theorem 4.4]).

Fix t ∈ N. In 1986, Frankl and Wilson [4] generalized Hsieh’s results for the family F of

k-dimensional subspaces of V such that for any A,B ∈ F, dim(A ∩B) ≥ t.

Let Ω be a finite set and G a permutation group on it. A subset A of G is intersecting

if for any δ, τ ∈ A, there exists x ∈ Ω such that δ(x) = τ(x). As an intersecting set of the

permutation group G, we can name the stabilizer of a point. The Erdös-Ko-Rado theorem

for permutation groups is finding the size of the largest intersecting set of G. This problem

goes back to 1977 [2].

Theorem 3. Let F be an intersecting set of the symmetric group Sn.
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(1) (Deza and Frank [2]) |F| ≤ (n− 1)!.

(2) ([1, 5, 7, 9]) F meets this bound if and only if F is a coset of the stabilizer of a point.

In [8], it has been proved that the size of intersection set of the permutation group PGL2(q)

acting on the projective line Pq, is at most q(q− 1) and the only sets S that meet this bound

are the cosets of the stabilizer of a point of Pq. Also, Guo and Wang (An Erdöos-Ko-Rado

theorem in general linear groups, arXiv:1107.3178) find the upper bound for the size of the

intersecting set of GLn(q) acting on (GF (q))n − {0}. In the submitted paper, we study the

Erdös-Ko-Rado theorem for SL2(q) and GL2(q) acting on (GF (q))2−{0} and PSL2(q) acing

on the projective line Pq. In this talk we concern the Erdös-Ko-Rado theorem for some linear

groups and symplectic groups.
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