Some properties of linear groups

Milad Ahanjideh^{\dagger} and Neda Ahanjideh^{\ddagger} *

One of the results in extremal combinatorics which has been proved and extended in many ways is the Erdös-Ko-Rado theorem [3]. A k-set system is a collection of subsets of $\{1, 2, ..., n\}$ of size k. A k-set system is intersecting if its elements are pairwise non-disjoint.

Theorem 1. (Erdös, Ko and Rado [3]) Let k and n be positive integers such that $n \ge 2k$.

- (1) If \mathfrak{F} is an intersecting k-set system on an n-set, then $|\mathfrak{F}| \leq \binom{n-1}{k-1}$.
- (2) If n > 2k, then \mathfrak{F} meets this bound if and only if \mathfrak{F} is the collection of all k-subsets containing a fixed element $i \in \{1, ..., n\}$.

Erdös-Ko-Rado theorem has been extended in many ways. In [6], Hsieh investigated the analogous problem for finite vector spaces. Let GF(q) denote a finite field with q elements. **Theorem 2.** (Hsieh [6]) Let \mathfrak{F} be a family of k-dimensional subspaces of an n-dimensional vector space V over GF(q) such that the members of \mathfrak{F} intersect pairwise non-trivially.

- (1) If $n \ge 2k$, then $|\mathfrak{F}| \le {\binom{n-1}{k-1}}_q$, where the Gaussian coefficient ${\binom{n-1}{k-1}}_q$ denotes the number of k-dimensional subspaces of V containing a specific 1-dimensional subspace of V.
- (2) If n > 2k, then \mathfrak{F} meets this bound if and only if \mathfrak{F} is a family of k-dimensional subspaces of V containing a specific 1-dimensional subspace of V (see [6, Theorem 4.4]).

Fix $t \in \mathbb{N}$. In 1986, Frankl and Wilson [4] generalized Hsieh's results for the family \mathfrak{F} of *k*-dimensional subspaces of *V* such that for any $A, B \in \mathfrak{F}$, dim $(A \cap B) \ge t$.

Let Ω be a finite set and G a permutation group on it. A subset A of G is intersecting if for any δ , $\tau \in A$, there exists $x \in \Omega$ such that $\delta(x) = \tau(x)$. As an intersecting set of the permutation group G, we can name the stabilizer of a point. The Erdös-Ko-Rado theorem for permutation groups is finding the size of the largest intersecting set of G. This problem goes back to 1977 [2].

Theorem 3. Let \mathfrak{F} be an intersecting set of the symmetric group \mathbb{S}_n .

^{*}Faculty of Mathematics and Computer Science, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran, Email: ahanjidm@gmail.com[†]

Department of Mathematics, Shahrekord University, P.O.Box: 115, Shahrekord, Iran, Email: ahanjideh.neda@sci.sku.ac.ir[‡]

- (1) (Deza and Frank [2]) $|\mathfrak{F}| \leq (n-1)!$.
- (2) ([1, 5, 7, 9]) \mathfrak{F} meets this bound if and only if \mathfrak{F} is a coset of the stabilizer of a point.

In [8], it has been proved that the size of intersection set of the permutation group $PGL_2(q)$ acting on the projective line \mathbb{P}_q , is at most q(q-1) and the only sets S that meet this bound are the cosets of the stabilizer of a point of \mathbb{P}_q . Also, Guo and Wang (An Erdöos-Ko-Rado theorem in general linear groups, arXiv:1107.3178) find the upper bound for the size of the intersecting set of $GL_n(q)$ acting on $(GF(q))^n - \{0\}$. In the submitted paper, we study the Erdös-Ko-Rado theorem for $SL_2(q)$ and $GL_2(q)$ acting on $(GF(q))^2 - \{0\}$ and $PSL_2(q)$ acing on the projective line \mathbb{P}_q . In this talk we concern the Erdös-Ko-Rado theorem for some linear groups and symplectic groups.

References

- P.J. Cameron and C.Y. Ku, Intersecting families of permutations, *European J. Combin.*, 24(7) (2003) 881-890.
- [2] M. Deza and P. Frankl, On the maximal number of permutations with given maximal or minimal distance, J. Combin. The. Ser. A, 22 (1977) 352-360.
- [3] P. Erdös, C. Ko and R. Rado, Intersecting theorems for systems of finite sets, Quart. J. Math. Oxford Ser., 12(2) (1961) 313-320.
- [4] P. Frankl and R.M. Wilson, The Erdöos-Ko-Rado theorem for vector spaces, J. Combin. The. Ser. A, 43 (1986) 228-236.
- [5] C. Godsil and K. Meagher, A new proof of the Erdös-Ko-Rado theorem for intersecting families of permutations, *European J. Combin.*, **30** (2009) 404-414.
- [6] W.N. Hsieh, Intersection theorems for systems of finite vector spaces, *Discrete Math.*, 12 (1975) 1-16.
- [7] B. Larose and C. Malvenuto, Stable sets of maximal size in Kneser-type graphs, *European J. Combin.*, 25(5) (2004) 657-673.
- [8] K. Meagher and P. Spiga, An Erdös-Ko-Rado theorem for the derangement graph of PGL₂(q) acting on the projective line, J. Combin. The. Ser. A, 118 (2011) 532-544.

[9] J. Wang and S.J. Zhang, An Erdös-Ko-Rado theorem in Coxeter groups, *European J. Combin.*, 29 (2008) 1112-1115.