A derived π -length of π -soluble groups and central π -Hall intersections

O.A. Shpyrko

Only finite groups are considered. Let G be a π -soluble group. The smallest natural number of abelian π -factors among all subnormal series of group G with π' -factors or abelian π -factors is called a derived π -length of G and is defined by $l_{\pi}^{a}(G)$. It's clear that $l_{\pi}(G) \leq l_{\pi}^{n}(G) \leq l_{\pi}^{a}(G)$ for all π -soluble group G and in case $\pi = \{p\}$ we have $l_{\pi}^{a}(G) = l_{\pi}^{n}(G) = l_{\pi}(G) = l_{\pi}(G)$.

Recall, under the central intersection of π -Hall subgroups means the intersection of two different π -Hall subgroups containing the center of one of them.

In works [1-3] provided estimates of the p-length $l_p(G)$ of p-soluble group G (π -length $l_{\pi}(G)$ and nilpotent π -length $l_{\pi}(G)$ of π -soluble group G) depending on the structure of central p-Sylow (π -Hall) intersections.

Similar results were obtained for the derived π -length of π -soluble groups.

Theorem. 1. If the π -soluble group G has no central π -Hall intersection, then $l_{\pi}^{a}(G) = d(G_{\pi})$.

2. If in a π -soluble group G central π -Hall intersections are abelian either Schmidt group, then $l_{\pi}^{a}(G) \leq 1 + d(G_{\pi})$.

Corollary 1. If the p-soluble group G has no central p-Sylow intersection, then $l_p^a(G) = d(G_p)$.

Corollary 2. Let G be a π -soluble group with metabelian central π -Hall intersections, then $l_{\pi}^{a}(G) \leq 3$.

Corollary 3. Let G be a π -soluble group with biabelian central π -Hall intersections, then $l_{\pi}^{a}(G) \leq 3$.

References

- 1. Anizhenko A.G., Monakhov V.S., Central intersections and p-length of p-soluble groups// Docl.AS BSSR. 1977. T.XXI, №11. P.968-971.
- 2. Putilov S.V., About normal structure of finite π -soluble groups // Voprosy algebry. Minsk: University. 1990, V.5. P.82-86.
- 3. Shpyrko O.A., About intersections Hall subgroups and π -length of π -soluble group // VSU Vestnik. 2000. $\mathbb{N}_{2}4(18)$. P.82-89.