SPLITTING AUTOMORPHISMS OF FREE BURNSIDE GROUPS OF ORDERS p^k ARE INNER

V. S. ATABEKYAN

Automorphism φ of G is called *splitting automorphism of period* n, if $\varphi^n = 1$ and $g g^{\varphi} g^{\varphi^2} \cdots g^{\varphi^{n-1}} = 1$ for any element $g \in G$. BY theorem of O. Kegel [1] any finite group having a nontrivial splitting automorphism of prime period is nilpotent. E. Khukhro [2] proved that any solvable group having a nontrivial splitting automorphism of prime period also is nilpotent.

It is easy to verify that each inner automorphism of the periodic group of period n is its splitting automorphism of period n. However, the converse is not true.

In Kourovka Notebook S.V. Ivanov posed the question: Let n is sufficiently large odd number and m > 1. Is it true that any splitting automorphism of period n of the free Burnside group B(m, n) is inner (see [3], question 11.36. b))?

In the paper [4] we proved that if the order of the automorphism φ of the free Burnside group B(m,n) is prime, then φ is an inner automorphism. In [4] also was proved that if φ is an splitting automorphism of period n of B(m,n), then the stabilizer of any normal subgroup $N \in \mathcal{M}_n$ under the action of $\langle \varphi \rangle$ is not trivial for any odd $n \geq 1003$, where \mathcal{M}_n is a specially chosen set of normal subgroups. This statement has proved useful for solving mentioned problem for automorphisms of prime power orders. We proved the following result.

Theorem. Let φ be splitting automorphism of period n of the free Burnside group B(m, n), where $n \geq 1003$ is an arbitrary odd number. Then, if the order of the automorphism φ is prime power, then φ is an inner automorphism.

References

- [1] Kegel O. H., Die Nilpotenz der H_p -Gruppen. Math. Z. 1961. Vol. 75 P. 373–376.
- Khukhro E. I., Nilpotency of solvable groups admitting a splitting automorphism of prime order. Algebra and Logic. 1980. V. 19:1 P. 77–84.
- [3] Kourovka Notebook; 11 ed., Novosibirsk, 1990.
- [4] Atabekyan V.S., Splitting automorphisms of free Burnside groups, Mat. Sb., 204:2, 2013, P. 31– 38.

 $\mathbf{1}$

Yerevan State University, Yerevan (Armenia) E-mail address: varujan@atabekyan.com