Intersection of conjugate solvable subgroups in finite groups

Anton Baykalov

Assume that a finite group G acts on a set Ω. An element $x \in \Omega$ is called a regular point if $|x G|=|G|$, i.e. if the stabilizer of x is trivial. Define the action of the group G on Ω^{k} by

$$
g:\left(i_{1}, \ldots, i_{k}\right) \mapsto\left(i_{1} g, \ldots, i_{k} g\right) .
$$

If G acts faithfully and transitively on Ω, then the minimal number k such that the set Ω^{k} contains a G-regular point is called the base size of G and is denoted by $b(G)$. For a positive integer m the number of G-regular orbits on Ω^{m} is denoted by $\operatorname{Reg}(G, m)$ (this number equals 0 if $m<b(G)$). If H is a subgroup of G and G acts by the right multiplication on the set Ω of right cosets of H then G / H_{G} acts faithfully and transitively on the set Ω. (Here $H_{G}=\cap_{g \in G} H^{g}$.) In this case we denote $b\left(G / H_{G}\right)$ and $\operatorname{Reg}\left(G / H_{G}, m\right)$ by $b_{H}(G)$ and $\operatorname{Reg}_{H}(G, m)$ respectively.

Thus $b_{H}(G)$ is the minimal number k such that there exist $x_{1}, \ldots, x_{k} \in G$ with $H^{x_{1}} \cap \ldots \cap H^{x_{k}}=H_{G}$.

Consider Problem 17.41 b) from "Kourovka notebook" [1]:
Let H be a solvable subgroup of finite group G that has no nontrivial solvable normal subgroups. Do there always exist five conjugates of H whose intersection is trivial?

The problem is reduced to the case when G is almost simple in [2]. Specifically, it is proved that if for each almost simple group G and solvable subgroup H of G inequality $\operatorname{Reg}_{H}(G, 5) \geq 5$ holds then for each finite nonsolvable group G and maximal solvable subgroup H of G inequality $\operatorname{Reg}_{H}(G, 5) \geq 5$ holds.

In the talk we discuss the recent progress in the solution of the problem.

References

[1] The Kourovka Notebook: Unsolved problems in group theory, 18 ed., arXiv:1401.0300.
[2] E. P. Vdovin, On the base size of a transitive group with solvable point stabilizer, Journal of Algebra and Application 11 (2012), no. 1, 1250015 (14 pages)

Novosibirsk State University, Russia
E-mail address: anton188@bk.ru

