Separability of Cayley schemes over abelian *p*-groups

GRIGORY RYABOV

A Cayley scheme is called *separable* with respect to the class of Cayley schemes \mathcal{K} if it is determined up to isomorphism in \mathcal{K} only by its intersection numbers. We say that an abelian group G is *separable* if every Cayley scheme over G is separable with respect to the class of Cayley schemes over abelian groups. Denote the cyclic group of order n by C_n . Let G be a noncyclic abelian p-group. From the previously known results it follows that if G is separable then G is isomorphic to $C_p \times C_{p^k}$ or $C_p \times C_p \times C_{p^k}$, where $p \in \{2, 3\}$ and $k \geq 1$. In fact, all Cayley schemes over $C_p \times C_{p^k}$ were classified in [1] for p = 2 and in [2] for p = 3. By using this classification we prove that the groups $G = C_p \times C_{p^k}$ are separable whenever $p \in \{2, 3\}$. The obtained result implies the solution of the graph isomorphism problem in time $|G|^{O(1)}$ in the class of graphs that isomorphic to Cayley graphs over G. Also based on the description of all Cayley schemes over G we solve in time $|G|^{O(1)}$ the following problem: given a graph Γ on |G| vertices determine whether Γ is isomorphic to a Cayley graph over G.

References

- M. Muzychuk, I. Ponomarenko, On Schur 2-groups, Zapiski Nauchnykh Seminarov POMI 435 (2015), 113-162.
- [2] G. Ryabov, On Schur p-groups of odd order, J. Algebra Appl. 16 (2017), no. 3, 1750045 (29 pages).

NOVOSIBIRSK STATE UNIVERSITY, RUSSIA E-mail address: gric2ryabov@gmail.com